

Testing Digital Systems II

Lecture 5: Built-in Self Test (I)

Instructor: M. Tahoori

Copyright 2010, M. Tahoori

TDS II: Lecture 5

1

Outline

- Introduction (Lecture 5)
- Test Pattern Generation (Lecture 5)
 - Pseudo-Random
 - Pseudo-Exhaustive
- Output Response Analysis (Lecture 6)
 - Duplication
 - Response Compaction
 - Signature Analysis
- BIST Architectures (Lecture 7)

Copyright 2010, M. Tahoori

TDS II: Lecture 5

2

Built-In Self Test

- Definition:
 - Capability of a Product
 - chip, multichip assembly, or system
 - To carry out an explicit test of itself
- Requires
 - Test Pattern Generation
 - Output Response Analysis
 - One or both integral to the product
 - Minimal external test equipment required

Copyright 2010, M. Tahoori

TDS II: Lecture 5

3

A Typical Logic BIST System

Structural off-line BIST

Copyright 2010, M. Tahoori

TDS II: Lecture 5

Built-In Self Test

- Why BIST (Built-In Self Test) ?
 - Improved product quality
 - Faster debug
 - Better diagnosis
 - Thorough test very many high-speed patterns
 - Economical production test
 - Improved field test and maintainability
- What are its drawbacks?
 - Initial design investment
 - Possible performance or area overhead

Copyright 2010, M. Tahoori

TDS II: Lecture 5

5

BIST Techniques

- Enhanced functional self-test software routines
- Exhaustive and pseudo-exhaustive
- Pseudo-random (PR-BIST)

Copyright 2010, M. Tahoori

TDS II: Lecture 5

6

BIST Techniques

- Enhanced functional self-test software routines
 - For field test and diagnosis
 - Advantage:
 - No hardware modifications
 - Disadvantages:
 - Low hardware fault coverage
 - Low diagnostic resolution
 - Slow to operate
 - Labor intensive, low fault coverage
- Exhaustive and pseudo-exhaustive
 - + Thorough test of stuck faults
 - + Minimal simulation required
 - Difficult to implement for arbitrary designs

Copyright 2010, M. Tahoori

TDS II: Lecture 5

7

BIST Techniques

- Pseudo-Random (PR-BIST)
 - Separate (Serial Scan-Loaded Test Patterns)
 - External Pattern Generation, Response Analysis
 - Embedded PR-BIST (System Bistables Reconfigured)
 - BILBO Multiple Test Configurations
 - Circular

Copyright 2010, M. Tahoori

TDS II: Lecture 5

8

BIST Attributes: Fault Characteristics

- Fault classes tested
 - Single-stuck faults in functional circuitry
 - Combinational faults in functional circuitry
 - Delay faults
 - Interchip wiring and chip I/O connections
- Fault coverage
 - Percentage of faults guaranteed to be detected

Copyright 2010, M. Tahoori

TDS II: Lecture 5

9

BIST Attributes: Cost Characteristics

- Area overhead
 - Additional active area, interconnect area
 - Test controller
 - Hardware pattern generator
 - Hardware response compacter
 - Testing of BIST hardware
- Pin overhead: Additional pins required for testing
- Performance penalty: Added path delays
- Yield loss: Due to increased area
- Reliability reduction: Due to increased area

Copyright 2010, M. Tahoori

TDS II: Lecture 5

10

BIST Attributes: Other Characteristics

- Generality
 - Degree of function dependence
- Time required to execute test
- Diagnostic resolution
- Engineering changes
 - Effect on BIST structure
- Functional circuitry
 - Scan path?
 - Design changes?

Copyright 2010, M. Tahoori

TDS II: Lecture 5

11

BIST Attributes: Other Characteristics

- Test Pattern Generation
 - Exhaustive
 - Pseudo-Exhaustive
 - Pseudo-Random
- Response Analysis
 - LFSR
 - Duplication

Copyright 2010, M. Tahoori

TDS II: Lecture 5

12

Exhaustive and Pseudo-Exhaustive Test

- Exhaustive Test of n-Input Combinational Circuit
 - Apply all N = 2ⁿ Patterns
- Pseudo-Exhaustive Test of Combinational Circuit
 - Subdivide the Circuit into Segments
 - Apply all Possible Inputs to each Segment
- Input patterns 2^m m-bit patterns
 - binary counter
 - Gray counter
 - m-stage Modified ALFSR

Copyright 2010, M. Tahoori

TDS II: Lecture 5

13

Test Patterns

- Stored Off Line
 - Patterns are generated and stored
 - Simulation used to identify patterns for removal
- "Just-in-Time"
 - Patterns are generated during test application
 - External tester generates patterns
 - Patterns generated on same chip or board as device under test
 - +Easy to Generate
 - +Detect Non- single-stuck faults
 - -Long
 - Coverage Expensive to Determine

Copyright 2010, M. Tahoori

TDS II: Lecture 5

14

Random vs Pseudorandom

- Random Source
 - Patterns can occur more than once
 - Non-reproducible
- Pseudorandom Source
 - All (possibly except all-0 pattern) Patterns
 - Occur Before Any Pattern Repeats
 - Reproducible

Copyright 2010, M. Tahoori

TDS II: Lecture 5

15

Test Pattern Generator

Copyright 2010, M. Tahoori

TDS II: Lecture 5

16

Pseudo-Random Test Pattern Generator

- Four-stage ALFSR Standard or External Form
 - Autonomous Linear Feedback Shift Register

- Output Sequence: $a(t + 4) = a(t + 3) \oplus a(t)$
- Generating Function: $f(x) = x^4 + x^3 + 1$
- Feedback Vector: $H = \langle h_4, h_3, ..., h_0 \rangle = \langle 1, 1, 0, 0, 1 \rangle$

Copyright 2010, M. Tahoori

TDS II: Lecture 5

17

Pseudo-Random Test Pattern Generator

- Operator Notation
 - $X^i a(t) = a(t+i)$
 - $(X^3 + X + 1) a(t) = a(t+3) + a(t+1) + a(t)$

Copyright 2010, M. Tahoori

TDS II: Lecture 5

18

Standard Form ALFSR

- Output Sequence: $a(t+N) = \sum_{i=0}^{N-1} h_i a(t+i)$ Modulo 2
- Generating Function: $f(x) = \sum_{i=0}^{N} h_i x^i$ Modulo 2

Copyright 2010, M. Tahoori

TDS II: Lecture 5

19

Four-Stage Modular ALFSR (Divider)

- Generating Function: $f(x) = x^4 + x^3 + 1$
- Feedback Vector: $H = \langle h_4, h_3, ..., h_0 \rangle = \langle 1, 1, 0, 0, 1 \rangle$

Copyright 2010, M. Tahoori

TDS II: Lecture 5

20

Lecture 5

10

Test Architecture

- m-stage ALFSR generates L m-bit patterns
 - L is test length
 - M = 2^m 1 is number of patterns generated
- n is number of inputs for network under test (NUT)
 - N = 2ⁿ is exhaustive test length for NUT
 - Patterns generated on same chip or board
 - as device under test

Copyright 2010, M. Tahoori

TDS II: Lecture 5

27

Test Architecture

Copyright 2010, M. Tahoori

TDS II: Lecture 5

28