

Testing Digital Systems II

Lecture 2: Design for Testability (I)

Instructor: M. Tahoori

Copyright 2010, M. Tahoori

TDS II: Lecture 2

1

History

- During early years, design and test were separate
 - The final quality of the test was determined by keeping track of the number of defective parts shipped to the customer
 - Defective parts per million (PPM) shipped was a final test score.
 - This approach worked well for small-scale integrated circuit
- During 1980s, fault simulation was used
 - Failed to improve the circuit's fault coverage beyond 80%
- Increased test cost and decreased test quality lead to DFT engineering

TDS II: Lecture 2

2

Lecture 2

History

- Various testability measures & ad hoc testability enhancement methods
 - To improve the testability of a design
 - To ease sequential ATPG (automatic test pattern generation)
 - Still quite difficult to reach more than 90% fault coverage
- Structured DFT
 - To conquer the difficulties in controlling and observing the internal states of sequential circuits
 - Scan design is the most popular structured DFT approach
- Design for testability (DFT) has migration recently
 - From gate level to register-transfer level (RTL)

Copyright 2010, M. Tahoori

TDS II: Lecture 2

Design for Testability (DFT)

- Design techniques that are used to make testing of the resulting product economical
- Testability
 - Easy to generate test patterns with "high" fault coverage within reasonable time

Copyright 2010, M. Tahoori

TDS II: Lecture 2

4

Advantages

- DFT techniques provide the capability of increasing the diagnostic resolution of defects in ICs
 - By providing access to the internal nodes of a circuit.
 - To explain the defective behaviors of a circuit
 - By localizing the defect with a small region of the IC and identifying the defect using failure mode analysis
 - Useful for
 - Design verification to identify design errors that are discovered only after the prototype has been manufactured
 - Yield learning purposes during the introduction and the early stages of a manufacturing process
- DFT has a positive impact on the time to market of ICs
 - it is possible to access internal nodes of an IC using DFT.
 - Identification of testability problems after synthesis and physical design is detrimental to being the first in the market with a new product

Copyright 2010, M. Tahoori

TDS II: Lecture 2

5

Disadvantages

- Added costs
 - Area and performance overheads
 - Extra hardware may be added or there may be restrictions on what kinds of circuit design styles are allowed
- The area overhead may translate into fewer dies per wafer
 - Increasing the manufacturing cost and reducing the revenue
 - DFT-related die area increase of 15% in a Pentium processor design
 - Costs Intel the construction of a new multi-billion dollar fab in order to produce around ten million microprocessor units annually
- Yield loss with DFT
 - Defects in the region devoted to DFT circuitry
- Excessive die area if the DFT technique requires too many I/O pins.
- Increased pin count and power consumption due to the DFT circuit
 - May imply that an expensive package has to be used
 - Thus increasing the manufacturing cost

Copyright 2010, M. Tahoori

TDS II: Lecture 2

6

Challenge

- "Right" DFT technique to choose
- Observability and controllability play a major role in influencing the testability of a given IC
 - *Observability* refers to the ease with which the state of internal signals can be determined at the circuit output leads.
 - Controllability refers to the ease of producing a specific internal signal value by applying signals to the circuit input leads
- Improve testability
 - Introduce test points, that is, additional circuit inputs and outputs to be used during testing

Copyright 2010, M. Tahoori

TDS II: Lecture 2

7

Design for Testability Basics

- Ad hoc DFT
 - Effects are local and not systematic
 - Not methodical
 - Difficult to predict
- A structured DFT
 - Easily incorporated and budgeted
 - Yield the desired results
 - Easy to automate

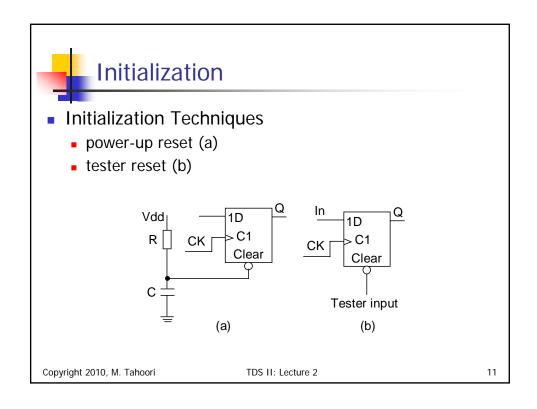
Copyright 2010, M. Tahoori

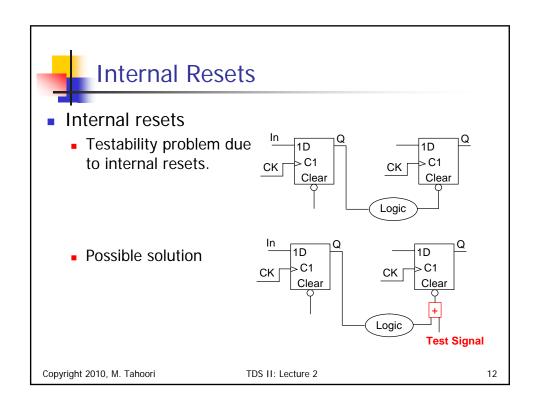
TDS II: Lecture 2

Ad Hoc DFT Techniques

Copyright 2010, M. Tahoori

TDS II: Lecture 2

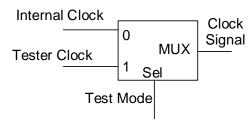

Initialization


- Initialization
 - ability to control the initial state of registers and sequential circuits
- Many designs do not require a specified initial state for correct functioning
 - they will work properly for any arbitrary initial state
- Testing requires circuit to be placed in a known state
 - Why? (if correct functionality doesn't require initialization)
 - standard commercial testers do not alter the input sequence on the basis of the outputs received
 - while the system in which a circuit is embedded does typically determine the inputs sent to the circuit on the basis of the outputs received from the circuit

Copyright 2010, M. Tahoori

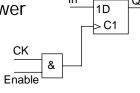
TDS II: Lecture 2

10

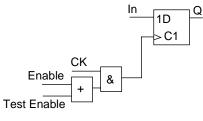


Internal Clocks

- Designs contain flip-flops that are clocked by signals that are generated by some portions of the logic on the chip
- Solution
 - Substituting internal clocks by tester clock in test mode


Copyright 2010, M. Tahoori

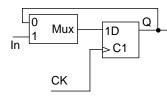
TDS II: Lecture 2

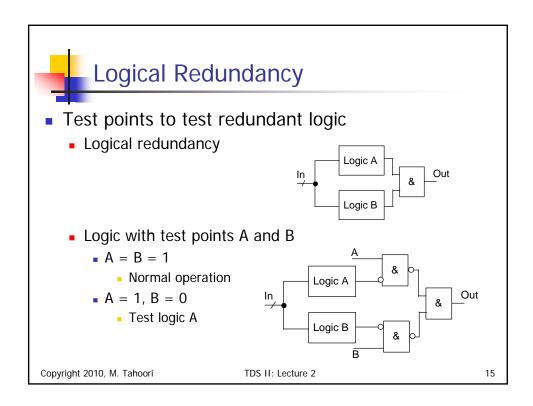


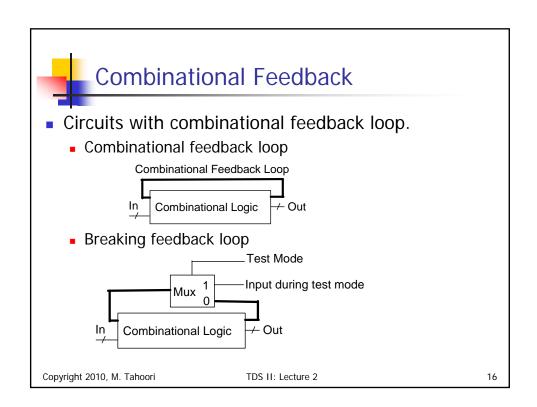
Gated Clocks

- Gated clocks to reduce power
 - Example of gated clock

 Possible solutions to the testability problem created by gated clocks


Mux 1D > C1 CK


Copyright 2010, M. Tahoori


TDS II: Lecture 2

7 Lecture 2

13

Summary: Ad-Hoc DFT Techniques

1	
Feature	Ad hoc Technique
Unknown initial state	Initialization circuitry
Internal clock	Circuitry to disconnect internal clock and substitute tester clock
Logical redundancy	Avoid or add test points
Feedback loops	Circuitry to permit tester to break feedback loop
Internally generated signals for asynchronous set and Reset inputs of flip-flops	Circuitry to permit tester not to allow the tester not to allow these signals to set/reset flip-flops during test
Wired logic	Avoid
Bidirectional I/O pins	Circuitry to permit tester to configure them to operate in one direction
Tristate drivers and pass transistors	Circuitry to permit tester to configure them so that only 1 driver drives the bus

Copyright 2010, M. Tahoori TDS II: Lecture 2