

Testing Digital Systems I

Lecture 11: Test Generation for Sequential Circuits

Instructor: M. Tahoori

Copyright 2011, M. Tahoori

TDS I: Lecture 11

Sequential Circuits

- Approach
 - Convert Finite State Machine to Corresponding Iterative Network
 - Multiple Time Frames (Iterative Cells) Needed for
 - Justification and Propagation
 - One Fault in Sequential Circuit
 - Many Faults in Corresponding Iterative Network
 - Use 9-valued signals
- Issues
 - Order of Justification and Propagation
 - Simulation Values
 - Test Point Insertion (Partial Scan)

Copyright 2011, M. Tahoori

Lecture 11

TDS I: Lecture 11

1

1

Sequential ATPG

- Difficulties
 - Initialization of the bistables
 - Gated clocks
 - Circuits with multiple clock domains
 - Internally derived clocks, mixed data and clock signals
 - Asynchronous logic
 - Circuits with combinational feedback paths
 - Embedded counters
 - Embedded RAMs and ROMs

Copyright 2011, M. Tahoori

TDS I: Lecture 11

3

Finite State Machine

- Example : serial adder
 - $\bullet S_i = a_i \oplus b_i \oplus c_{i-1}$
 - $C_i = a_i b_i + c_{i-1} (a_i + b_i)$

Copyright 2011, M. Tahoori

TDS I: Lecture 11

Example (cont)

- Test for u SA1
 - In time frame t 1
 - G = 1, y = X
 - A = 1
 - $U = D' \Rightarrow A = 0$ in the faulty circuit
 - Conflict!

Example (cont)

- Problem with this example
 - Try to extend D-algorithm for sequential circuits
- Z is 1 in the presence of u/1 irrespective of
 - the logic values on other signal lines, and
 - the content of the flip-flop

Copyright 2011, M. Tahoori

TDS I: Lecture 11

12

11

Example (cont)

- Input sequence to set Z to 0 in the fault-free circuit
 - E = 0 and G = 1
 - B = 1 ⇒ y = 1
 - u = v = 0 and w = 1 in cycle t 1
 - u = 0, v = 1 and w = 1 in cycle t

Copyright 2011, M. Tahoori

TDS I: Lecture 11

13

Nine-Valued Signals

- A fault can be detected even if in the presence of the fault a signal line in the faulty circuit has an unknown value (X)
 - While the corresponding signal line in the fault-free circuit has a known value (0 or 1) or vice-versa
- This information is not expressed by the logic values 0, 1, D and D' introduced in the context of the D-algorithm

Copyright 2011, M. Tahoori

TDS I: Lecture 11

14

Nine-Valued Signals

Symbol	Symbol	Fault-free circuit value	Faulty Circuit Value
<0, 0>	0	0	0
<1, 1>	1	1	1
<1, 0>	D	1	0
<0, 1>	D'	0	1
<x, x=""></x,>	Х	0 or 1	0 or 1
<0, X>	G0	0	0 or 1
<1, X>	G1	1	0 or 1
<x, 0=""></x,>	F0	0 or 1	0
<x, 1=""></x,>	F1	0 or 1	1

Copyright 2011, M. Tahoori

TDS I: Lecture 11

15

Using Nine-valued Signals

- Propagate assigned values
- Assign values to propagate D or D
- Assign values to provoke D or D at stuck fault gate output
 - Primitive D-cube of the fault
- Line Justification

Copyright 2011, M. Tahoori

TDS I: Lecture 11

16

Propagating Assigned Values

AND	0	1	D	D'	Χ	G0	G1	F0	F1
0	0	0	0	0	0	0	0	0	0
1	0	1	D	Ď	Χ	G0	G1	F0	F1
D	0	D	D	0	F0	0	D	F0	F0
D'	0	D'	0	Ď	GO	G0	G0	0	Ď
X	0	Χ	F0	G0	Χ	G0	Χ	F0	Χ
G0	0	G0	0	G0	GO	G0	G0	0	GO
G1	0	G1	D	G0	Χ	G0	G1	F0	Χ
F0	0	F0	F0	0	F0	0	F0	F0	F0
F1	0	F1	F0	D'	Χ	G0	Χ	F0	F1

Copyright 2011, M. Tahoori

TDS I: Lecture 11

17

Propagation D-Cubes

- For propagating the fault effect through an OR gate with D input, apply <X, 0> to the other inputs of the OR gate.
- For propagating the fault effect through an OR gate with D' input, apply <0, X> to the other inputs of the OR gate.
- For propagating the fault effect through an AND gate with D input, apply <1, X> to the other inputs of the AND gate.
- For propagating the fault effect through an AND gate with D' input, apply <X, 1> to the other inputs of the AND gate.

Copyright 2011, M. Tahoori

TDS I: Lecture 11

18

Assigning Values To Provoke D Or D

- At stuck fault gate output
- Primitive D-cube of the fault

AND Gate with output SA0

а	b	Z	
<1,X>	<1,X>	D	

AND Gate with input a SA0

a	b	Z	
<1,X>	<1,X>	D	

Copyright 2011, M. Tahoori

AND Gate with output SA1

а	b	Z
<0,X>	<x,x></x,x>	D
<x,x></x,x>	<0,X>	D

AND Gate with input a SA1

а	b	Z
<0,X>	<x,1></x,1>	D

TDS I: Lecture 11

19

Line Justification

AND Gate with output < X,1>

а	b	Z	
<x,1></x,1>	<x,1></x,1>	<x,1></x,1>	

AND Gate with output <0,X>

а	b	Z	
<x,x></x,x>	<0,X>	<0,X>	
<0,X>	<x,x></x,x>	<0,X>	

Copyright 2011, M. Tahoori

TDS I: Lecture 11

20

Cycle-Free Circuits

- Characterized by
 - Absence of cycles among flip-flops and
 - a sequential depth, dseq.
- dseq is the maximum number of flip-flops on any path between PI and PO.
- Both good and faulty circuits are initializable.
- Test sequence length for a fault
 - is bounded by dseq + 1.

Copyright 2011, M. Tahoori

TDS I: Lecture 11

24

Modulo-3 Counter

- Cyclic structure
 - Sequential depth is undefined.
- Circuit is not initializable.
 - No tests can be generated for any stuck-at fault.
- After expanding the circuit to 9^{Nff} = 81, or fewer, timeframes ATPG program calls any given target fault untestable.
- Circuit can only be functionally tested by multiple observations.
- Functional tests, when simulated, give no fault coverage.

Copyright 2011, M. Tahoori

TDS I: Lecture 11

27

Summary

- Combinational ATPG algorithms are extended:
 - Time-frame expansion unrolls time as combinational array
 - Nine-valued logic system
 - Justification via backward time
- Cycle-free circuits:
 - Require at most dseq time-frames
 - dseq is the maximum number of flip-flops on any path between PI and PO
 - Always initializable
- Cyclic circuits:
 - May need 9^{Nff} time-frames
 - Nff is the number of flip-flops
 - Circuit must be initializable
 - Partial scan can make circuit cycle-free
- Asynchronous circuits:
 - High complexity
 - Low coverage and unreliable tests

Copyright 2011, M. Tahoori

TDS I: Lecture 11

28