

Today's Lecture

- Reliability evaluation
 - Permanent and temporary failures
- Combinatorial modeling
 - Series
 - Parallel
 - Series-parallel
 - Non-series-parallel
 - k-out-of-n
 - TMR vs. Simplex
 - Effects of voter, coverage

(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

Evaluation Criteria

- A method of evaluation is required in order to compare the redundancy techniques and make subsequent design tradeoffs
- Modeling techniques are very vital means for obtaining reasonable predictions for system reliability and availability
 - Combinatorial: series/parallel, K-of-N, nonseries/nonparallel
 - Markov: time invariant, discrete time, continuous time, hybrid
 - Queuing
- Using these techniques probabilistic models of systems can be created and used to evaluate system reliability and/or availability

(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

3

Basic Reliability Measures

- Reliability: durational (default)
 - R(t)=P{correct operation in duration (0,t)}
- Availability: instantaneous
 - A(t)= P{correct operation at instant t)}
 - Applied in presence of temporary failures
 - A steady-state value is the expected value over a range of time.
- Transaction Reliability: single transaction
 - R_t=P{a transaction is performed correctly}

(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

Mean time to ...

- Mean Time to Failure (MTTF):
 - expected time the unit will work without a failure.
- Mean time between failures (MTBF):
 - expected time between two successive failures.
 - Applicable when faults are temporary.
 - The time between two successive failures includes repair time and then the time to next failure.
- Mean time to repair (MTTR):
 - expected time during which the unit is non-operational.

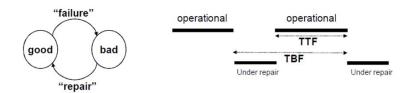
(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

5

Failures with Repair

Time between failures: time to repair + time to next failure



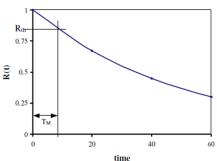
- MTBF = MTTF + MTTR
- MTBF, MTTF are same same when MTTR ≈ 0
- Steady state availability = MTTF / (MTTF+MTTR)

(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

Mission Time (High-Reliability Systems)

- Reliability throughout the mission must remain above a threshold reliability R_{th}.
- Mission time T_M: defined as the duration in which R(t) ≥ R_{th}.
- R_{th} may be chosen to be perhaps 0.95.
- Mission time is a strict measure, used only for very high reliability missions.



(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

7

Two Basic cases

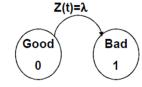
- We next consider two very important basic cases that serve as the basis for time-dependent analysis.
- 1. Single unit subject to permanent failure
 - We will assume a constant failure rate to evaluate reliability and MTTF.
- 2. Single unit with temporary failures
 - System has two states Good and Bad, and transitions among them are defined by transition rates.
- Both of these are example of Markov processes.

(c) 2012, Mehdi Tahoori

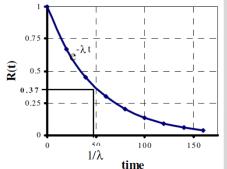
Reliable Computing I: Lecture 5

Single Unit with Permanent Failure

- Assumption: constant failure-rate λ
- Reliability = $R(t) = e^{-\lambda t}$
- $MTTF = \int_0^\infty R(t)dt = \int_0^\infty e^{-\lambda t}dt = \frac{1}{\lambda}$



- Ex 1: a unit has MTTF =30,000 hrs. Find failure rate. λ=1/30,000=3.3x10⁻⁵/hr
- Ex 2: Compute mission time T_M if R_{th} =0.95. e^{- λ T}_M =0.95 T_M = - ln(0.95)/ λ \approx 0.051/ λ
- Ex 3: Assume λ =3.33x10⁻⁵, and R_{th}=0.95 find T_M. Ans: T_M = 1538.8 hrs (compare with MTTF =30,000)



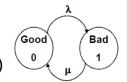
(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

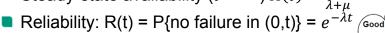
Single Unit: Temporary Failures

Temporary: intermittent, transient, permanent with repair

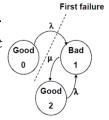
good



- $p_0(t) = p_0(0)e^{-(\lambda+\mu)t} + \frac{\mu}{\lambda+\mu}(1 e^{-(\lambda+\mu)t})$
- $p_1(t) = 1 p_0(t)$
- Availability $A(t) = p_0(t)$
- Steady-state availability $(t \to \infty) A(t) = \frac{\mu}{\lambda + \mu}$



- $MTTF = \frac{1}{\lambda}$
 - Same as permanent failure



(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

Combinatorial Modeling

- System is divided into non-overlapping modules
- Each module is assigned either a probability of working, P_i, or a probability as function of time, R_i(t)
- The goal is to derive the probability, P_{sys}, or function R_{sys}(t) of correct system operation
- Assumptions:
 - module failures are independent
 - once a module has failed, it is always assumed to yield incorrect results
 - system is considered failed if it does not satisfy minimal set of functioning modules
 - once system enters a failed state, other failures cannot return system to functional state
- Models typically enumerate all the states of the system that meet or exceed the requirements of correctly functioning system

(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

11

Combinatorial Reliability

- Objective is: Given a
 - systems structure in terms of its units
 - reliability attributes of the units
 - some simplifying assumptions
- We need to evaluate the overall reliability measure.
- There are two extreme cases we will examine first:
 - Series configuration
 - Parallel configuration
 - Other cases involve combinations and other configurations.
- Note that conceptual modeling is applicable to R(t), A(t), R_t(t). A system is either good or bad.

(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

Series configuration

- Assume system has n components, e.g. CPU, memory, disk, terminal
- All components should survive for the system to operate correctly

$$R_{S} = P\{U_{1} \operatorname{good} \cap U_{2} \operatorname{good} \cap U_{3} \operatorname{good}\}$$

$$= P\{U_{1} \operatorname{g}\}P\{U_{2} \operatorname{g}\}P\{U_{3} \operatorname{g}\}$$

$$= R_{1}R_{2}R_{3}$$

Reliability of the system

$$R_{series}(t) = \prod_{i=1}^{n} R_i(t)$$
 where $R_i(t)$ is the reliability of module i

(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

13

Series configuration

For exponential failure rate of each component

If
$$R_i(t) = e^{-\lambda_i t}$$

then
$$R_s(t) = \Pi e^{-\lambda_i t} = e^{-[\lambda_1 + \lambda_2 + \dots + \lambda_n]t}$$

$$R_{series}(t) = e^{-\sum_{i=1}^{n} \lambda_i t} = e^{-\lambda_{system} t}$$

Where $\lambda_{system} = \sum_{i=1}^{n} \lambda_i$ corresponds to the failure rate of the system

System failure rate is the sum of individual failure rates:

$$\lambda_{S} = \lambda_{1} + \lambda_{2} + \cdots + \lambda_{n}$$

Mean time to failure:

$$MTTF_{\text{series}} = \frac{1}{\sum_{i=1}^{n} \lambda_i}$$

(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

"A chain is as strong as it's weakest link"?

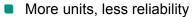
0.75

0.5

10 units

Time

- Let us see for a 4-unit series system
 - Assume $R_1 = R_2 = R_3 = 0.95$, $R_4 = 0.75$
 - R_S=0.643
- Thus a chain is slightly weaker than its weakest link! 0.25
- The plot gives reliability of a 10-unit system vs a single system. Each of the 10 units are identical.



if $X_i =$ lifetime of component *i* then

 $0 \le E[X] \le \min\{E[X_i]\}$

(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

15

100

Parallel Systems

2

n

- Assume system with spares
- As soon as fault occurs a faulty component is replaced by a spare
- Only one component needs to survive for the system to operate correctly
- Prob. of module i to survive = R_i
- Prob. of module i not to survive = (1 R_i)
- Prob. of no modules to survive =
 - \blacksquare (1 R₁)(1 R₂) ... (1 R_n)
- Prob [at least one module survives] =
 - 1 Prob [none module survives]
- Reliability of the parallel system

$$R_{parallel}(t) = 1.0 - \prod_{i=1}^{n} (1.0 - R_i(t))$$

(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

Parallel Systems

$$E(X) = \int_{0}^{\infty} \left[1 - (1 - e^{-\lambda t})^{n}\right] dt$$

$$= \dots$$

$$= \frac{1}{\lambda} \sum_{i=1}^{n} \frac{1}{i}$$

$$\approx \frac{\ln(n)}{\lambda}$$

(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

17

Parallel Configuration: Example

- Problem: Need system reliability $R_s = 1 \epsilon$
 - How many parallel units are needed
 - If $R_1 = R_2 = \dots = R_m$, $R_m < R_s$
- Solution: $1 R_s = (1 R_m)^x$ $\epsilon = (1 - R_m)^x$ $x = \frac{\ln \epsilon}{\ln(1 - R_m)}$

Assume
$$R_s = 0.9999 \ (\epsilon = 0.0001)$$
,
 $R_m = 0.9$
gives $x = 4$.

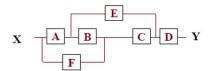
(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

Series-Parallel Systems Consider combinations of series and parallel systems Example, two CPUs connected to two memories in different ways R_{sys} = 1- (1-Ra Rb) (1-Rc Rd) CPU Memory a b c) 2012, Mehdi Tahoori Reliable Computing I: Lecture 5

Non-Series-Parallel-Systems

Often a "success" diagram is used to represent the operational modes of the system

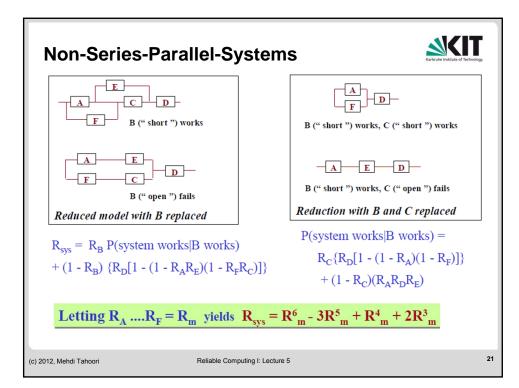


Each path from X to Y represents a configuration that leaves the system operational

- Reliability of the system can be derived by expanding around a single module m
- R_{sys} = R_m P(system works | m works) + (1-R_m) P(system works | m fails)
 - where the notation P(s | m) denotes the conditional probability "s given m has occurred"

(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5



Non-Series-Parallel-Systems

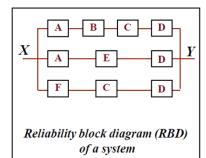
- For complex success diagrams, an upper-limit approximation on R_{svs} can be used
- An upper bound on system reliability is: $R_{\text{sys}} \leq 1 \prod \left(1 R_{path\ i}\right)$ R_{path} is the serial reliability of path i
 - The above equation is an upper bound because the paths are not independent.
 - That is, the failure of a single module affects more than one path.

(c) 2012. Mehdi Tahoori

Reliable Computing I: Lecture 5

Non-Series-Parallel-Systems

Example



$$\begin{split} R_{sys} & \leq 1 - \left(1 - R_A R_B R_C R_D\right) \left(1 - R_A R_E R_D\right) \left(1 - R_F R_C R_D\right) \\ R_{sys} & \leq 2 R_m^3 + R_m^4 - R_m^6 - 2 R_m^7 + R_m^{10} \end{split}$$

(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

22

k-out-of-n Systems

- Assumption:
 - we have n identical modules with statistically independent failures.
- k-out-of-n system is operational if
 - k of the n modules are good.
- System reliability then is $R_{k/n} = \sum_{i=k}^{n} {n \choose i} p^i (1-p)^{n-i}$
 - Where p is the probability that one unit is good
 - R_{k/n} is the summations of the probabilities of all good combinations
 - $\binom{n}{i} = \frac{n!}{i!(n-i)!}$: choose i good systems out of n

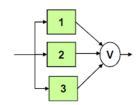
(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

Triple Modular Redundancy

2-out-of-3 system

$$R_{TMR} = \sum_{i=2}^{3} {3 \choose i} R^{i} (1-R)^{3-i}$$
$$= 3R^{2} (1-R) + R^{3}$$
$$= 3R^{2} - 2R^{3}$$

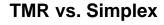


- Where R is the reliability of a single module.
- This assumes that the voter is perfect
 - a reasonable assumption if the voter complexity is much less than an individual module.

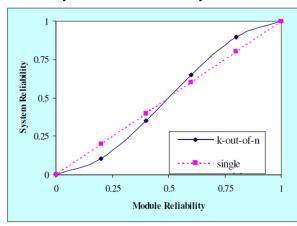
(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

25



System reliability vs. module reliability



What is the conclusion?

(c) 2012, Mehdi Tahoori Reliable Computing I: Lecture 5

TMR vs. Simplex: MTTF

Compare reliability of simplex and TMR systems

$$R_{simplex}(t) = e^{-\lambda t}$$

$$MTTF_{simplex} = \int e^{-\lambda t} dt = 1/\lambda$$

$$MTTF = \int_{0}^{\infty} R_{TMR}(t)dt$$
$$= \int_{0}^{\infty} (3e^{-2\lambda t} - 2e^{-3\lambda t})dt$$

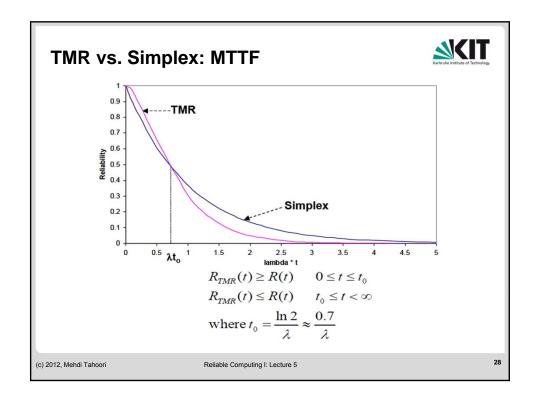
$$MTTF = \int_{0}^{\infty} R_{TMR}(t)dt \qquad \qquad R_{TMR}(t) = e^{-3\lambda t} + {3 \choose 2} e^{-2\lambda t} (1 - e^{-\lambda t})$$

$$= \int_{0}^{\infty} (3e^{-2\lambda t} - 2e^{-3\lambda t})dt \qquad MTTF_{TMR} = \frac{3}{2\lambda} - \frac{2}{3\lambda} = \frac{5}{6\lambda}$$

$$MTTF_{simplex} > MTTF_{TMR}$$

(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5



TMR vs. Simplex: Mission Time

Mission time

$$R_{Th} = 3e^{-2\lambda t_m} - 2e^{-3\lambda t_m}$$

- A numerical solution for t_m can be obtained iteratively
 - $Ex : \lambda = 1/year, R_{Th} = 0.95$

$$MTTF$$
 t_m

single 1yr 0.05

TMR 0.83 0.145

Thus TMR mission time is much better.

(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

20

TMR vs. Simplex: Availability

Temporary faults: steady state

$$A_{TMR} = 3A^2 - 2A^3$$
, $A = \frac{\mu}{\lambda + \mu}$

$$Ex: \frac{\lambda}{\mu} = 0.01 \Rightarrow A = 0.9901$$

$$\Rightarrow \overline{A} = 0.01$$

$$A_{TMR} = 0.9997 \Longrightarrow \overline{A}_{TMR} = 0.0003$$

Thus TMR can greatly reduce down-time in presence of temporary faults

(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

TMR vs. Simplex: Summary

- Instead of MTTF, look at mission time
- Reliability of K-out-of-N systems very high in the beginning
 - spare components tolerate failures
- Reliability sharply falls down at the end
 - system exhausted redundancy, more hardware can possibly fail
- Such systems useful in aircraft control
 - very high reliability, short time
 - 0.99999 over 10 hour period

(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

31

System with Backup: Effect of Coverage

- Failure detection is not perfect
 - Reconfiguration may not succeed
 - Attach a coverage "c"

$$\begin{split} R_s &= P\{U_1 \, good\} + \\ &\quad P\{U_2 \, has \, taken \, over \, | \, U_1 \, failed \, \} P\{U_1 \, failed \, \} \\ &= R_1 + R_2 C (1 - R_1) \end{split}$$

where C = P{failure detected and successful switchover}

2 3

General case, n-1 spares

$$R_s = R_m \sum_{i=0}^{n-1} C^i (1 - R_m)^i$$

(c) 2012. Mehdi Tahoori

Reliable Computing I: Lecture 5

System with Backup: Effect of Coverage

- If coverage is 100%, then given low module reliability, can increase system reliability arbitrarily
 - With low coverage, reliability saturates

	Rm = 0.9	Rm = 0.7	Rm = 0.5
C=0.99, n=2	0.989	0.908	0.748
C=0.99, n=4	0.999	0.988	0.931
C=0.99, n=inf	0.999	0.996	0.990
C= 0.8 , n=2	0.972	0.868	0.700
C= 0.8 , n=4	0.978	0.918	0.812
C=0.8, n=inf	0.978	0.921	0.833

(c) 2012, Mehdi Tahoori

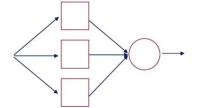
Reliable Computing I: Lecture 5

22

Effect of Voter

- Previous expression for reliability assumed voter 100% reliable
- Assume voter reliability R_v

$$R_{TMRV} = R_V (R_m^3 + {3 \choose 2} R_m^2 (1 - R_m))$$



(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5

TMR+Spares

- TMR core, n-3 spares (assume same failure rate)
- System failure when all but one modules have failed.
 - If we start with 3 in the core and 2 spares, the sequence is:
 - $3+2 \rightarrow 3+1 \rightarrow 3+0 \rightarrow 2+0 \rightarrow failure$
- Reliability of the system then is

$$R_s = R_{sw}[1-nR(1-R)^{n-1}-(1-R)^n]$$

- Where R is reliability of a single module and R_{sw} is the reliability of the switching circuit overhead.
- R_{sw} should depend on total number of modules n, and relative complexity of the switching logic.
- Let us assume that R_{sw}=(Ra)n,
 - where a is measure of relative complexity, generally a <<1
- $R_s = R^{an} [1-nR(1-R)^{n-1}-(1-R)^n]$

(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 5