
Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

INSTITUTE OF COMPUTER ENGINEERING (ITEC) – CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC)

www.kit.edu

Reliable Computing I

Lecture 11: Checkpointing and Recovery
Instructor: Mehdi Tahoori

Reliable Computing I: Lecture 11

Today’s Lecture

Backward error recovery
Checkpointing and Recovery

BER in uni-processor system

BER in multi-processor systems

2(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

Recovery - Basic Concepts

Providing fault tolerance involves three phases
Error detection
Assessment of the extent of the damage
Error recovery to eliminate errors and restart afresh

Forward error recovery - the continuation of the
currently execute process from some further point with
compensation for the corrupted and missed data. The
assumptions:

The precise error conditions that caused the detection and
the resulting damage can be accurately assessed
The errors in the process (system) state can be removed
The process (system) can move forward
Example: exception handling and recovery

3(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

Recovery - Basic Concepts

Backward error recovery - the current process is
rolled back to a certain, error-free, point and re-
executes the corrupted part of the process thus
continuing the same requested service. The
assumptions:

The nature of faults cannot be foreseen and errors in
the process (system) state cannot be removed without
re-executing

The process (system) state can be restored to a
previous error-free state of the process (system)

4(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

FER vs BER

5(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

Backward Error Recovery (BER)

If error detected, recover backwards & re-execute
Recover to previous state of system that we know is error-
free
Assumes that error will be gone before resuming execution

Some terminology:
Checkpointing: periodically saving state of system
Logging: saving changes made to system state
Recovery point: the point to which we recover in case of
error

Many commercial machines use(d) BER
Sequoia, Synapse N+1, Tandem/HP NonStop

BER also includes all-software schemes
Nightly backups of file systems, database software, etc.

6(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

Checkpoint and Rollback

Applicability
When time redundancy is allowed
To transient hardware and many software design faults (e.g., timing
faults)
To both nonredundant and redundant architectures
When it is feasible to determine checkpoints in an application

Checkpointing
Maintains/saves precise system state or a “snapshot” at regular
intervals

Snapshot can be as small as one instruction

Typically, checkpoint interval includes many instructions

May not be ideal when there is much error detection latency

Rollback recovery
When error is detected

Roll back (or restore) process(es) to the saved state, i.e., a checkpoint

Restart the computation

7(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

BER Abstraction

8(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

BER Performance

May sacrifice performance to achieve availability
Where might we lose performance?

May not be suitable for real-time systems
What are the alternatives?

9(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

Checkpoint and Rollback: What do we need?

Implement an appropriate error-detection
mechanism

Internal to the application: various self-checking
mechanisms

data integrity,

control-flow checking,

acceptance tests

External to the application
signals (e.g., abnormal termination),

missing heartbeats,

watchdog timers

10(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

6 BER Issues

1) What state needs to be saved?

2) How do we save this state?

3) Where do we save it?

4) How often do we save it?

5) How do we recover the system to this state?

6) How do we resume execution after recovery?

11(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

(1) What State To Save

Need to save all state that would be necessary if this were
to become the recovery point
Process state

Volatile states
Program stack (local variables, return pointers of function calls)
Program counter, stack pointer, open file descriptors, signal handlers
Static and dynamic data segments

Persistent states
User files related to the current program execution (whether to include the
persistent state in the process state depends on the application, e.g., the
persistent state is often an important part of a long-running application)

In general, we only need to save the user-visible state
For example, microprocessors:

Must save architectural state
Don’t have to worry about micro-architectural state

12(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

(2) How to Save State

Two “flavors” of BER:
Checkpointing: Periodically stop system and save state

Logging: Log all changes to state

Checkpointing
Only incurs performance overhead at periodic checkpoints

Can only recover at coarse granularity

Size of checkpoint is often fixed

Logging
Finer granularity of rollback

Incurs overhead for logging many common operations

Amount of state logged is variable (but may have upper bound)

Hybrid approaches are also used
Why might these be useful?

13(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

(3) Where to Save State

Have to save state where it is “safe”
A fault in the recovery point state could make recovery
impossible

In processor (can’t survive loss of processor chip)
Processor saves registers to shadow registers

In cache (same as processor, if on-chip cache)
Processor copies registers into cache

In memory (memory can be made pretty safe)
Processor copies registers into memory
Write-through cache copies data into memory

In disk (arguably the safest, but slow)
E.g., databases log updates to disks

In tape (too slow except for rare backups)

14(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

(4) When to Save State

Checkpointing
Can choose checkpoint interval
Determine checkpoint times based on

Elapsed time
Message received or sent, e.g., parallel or distributed applications
Amount of dirtied state, e.g., database applications
Critical function invocation/exit

Logging
Continuously saving state (every time it changes)

For checkpointing, a larger checkpoint interval means
Less overhead due to checkpointing (since less frequent)
Coarser checkpoint granularity (can’t recover to arbitrary
point)

15(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

(5) How to Recover State

Checkpointing:
Copy pre-fault recovery point checkpoint into architectural state

Logging:
Unroll log to undo changes since recovery point

Tradeoff between these two depends on system

16(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

(6) How to Resume Execution

Simply resuming execution after recovery may not
be feasible

E.g., recovery due to hard fault in interconnection
switch

May need to reconfigure before resuming, to
ensure forward progress

E.g., reconfiguring the routing in interconnect to avoid
dead switch

What if you can’t resume? Does BER still provide
any benefits (in any metric)?

17(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

Uniprocessor BER: What State To Save

Assume disks are safe storage
(common assumption)

Checkpoint state = architectural state
Architectural registers (including program counter, etc.)

NOT micro-architectural state (e.g., branch predictor
state)

Why not?

Memory (and caches)

18(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

Uniprocessor BER: How/Where To Save State

Architectural registers
Copy them to shadow registers within processor
Or map them to memory and thus save them in cache
(or memory)

Modified blocks in cache
Use write-through cache to copy cache state to memory
Or periodically flush all modified blocks to memory
Why don’t we save unmodified blocks in cache?

Dirty pages in memory
Periodically flush all dirty pages to disk
Why don’t we save clean pages?

19(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

Uniprocessor BER: When To Save State

If we save after every instruction
Almost has to be done with logging (rather than
checkpointing)
Enables finest granularity of recovery (but is this overkill?)
In OOO processor, must save precise state of system
Potentially high overhead

Logging takes time (but is it on critical path?)
Extra power consumption

If we save after every N instructions (N >> 1)
Coarser granularity recovery is likely to have to go back
farther in time and potentially undo more error-free work
But if errors are rare, this penalty won’t matter much
Overhead might be reduced by checkpointing (instead of
logging)

20(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

Uniprocessor BER: How To Recover State

Not possible if fault is in recovery point state!

Architectural registers
Copy them back from shadow registers

Load them back from where they were mapped in memory

Cache
Don’t have to do anything – state is already saved on
memory/disk

Will get re-loaded with state after resuming execution

Memory
Don’t have to do anything – state is already saved on disk

Will get re-loaded with state after resuming execution

21(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

Uniprocessor BER: How To Resume
Execution

May not be possible if fault can’t be tolerated
(even if we were able to recover from it)

E.g., hard fault in instruction fetch unit

Other examples?

For transient errors, nothing needs to be done
before resuming execution

22(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

Recovery in Distributed/Networked Systems

Processes cooperate by exchanging information to
accomplish a task

Message passing (distributed systems)
Shared memory (e.g., multiprocessor systems)

Rollback of one process may require that other
processes also roll back to an earlier state.
All cooperating processes need to establish recovery
points.
Rolling back processes in concurrent systems is more
difficult than for a single process due to

Domino effect
Lost messages
Livelocks

23(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

Recovery in Distributed/Networked Systems

Two types of systems
Shared memory

Processors communicate via global shared memory

Loads and stores to shared memory used to transfer data

Message passing
Processors communicate via explicit messages

Goal: create consistent checkpoints (via checkpointing
or logging)

Consistent checkpoint = set of per-processor checkpoints
that, in aggregate, constitutes a consistent system state

Recovery line = set of recovery points = consistent
checkpoint

24(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

Shared Memory BER

Must save uniprocessor state for all processors in
the system

Must also save state that corresponds to
communication between the processors

Cache and memory state

Includes cache coherence state

25(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

Massage Passing BER

What state to save?
Uniprocessor state at each processor in system

Messages received
From other processes

From outside world (e.g., Internet)

State depends on whether communication is reliable or lossy

In a consistent checkpoint, it shouldn’t be possible for
process P1 to have received message M from process P2 if
P2’s checkpoint doesn’t yet include having sent M

26(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

Local State

For a site (computer, process) Si, its local state LSi, at a
given time is defined by the local context of the distributed
application

send(mij) - send event of a message mij by Si to Sj

rec(mij) - receive event of message mij by site Sj

time(x) - time in which state x was recorded

We say that
send(mij) LSi iff time(send(mij)) < time(LSi)
rec(mij) LSj iff time(rec(mij)) < time(LSj)

Two sets of messages are defined for sites Si and Sj
Transit

transit(LSi, LSj) = {mij | send(mij) LSi rec(mij) LSj}

Inconsistent
inconsistent (LSi, LSj) = {mij | send(mij) LSi rec(mij) LSj}

27(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

Global State

A global state (GS) of a system is a collection of the
local states of its sites, i.e., GS = {LS1, LS2, …, LSn},
where n is the number of sites in the system.
Consistent global state:

A global state GS is consistent iff for every received
message a corresponding send event is recorded in the
global state

Transitless global state:
A global state GS transitless iff All communication channels
are empty

Strongly consistent global state:
A global state that is both consistent and transitless

28(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

Local/Global State - Examples

The global states:
GS1 = {LS11, LS21, LS31} is a strongly consistent global state.

GS2 = {LS12, LS23, LS33} is a consistent global state .

GS3 = {LS11, LS22, LS32} is an inconsistent global state.

29(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

Uncoordinated Checkpointing

Each process independently takes checkpoint
Doesn’t coordinate with other processes

Pros
Easier to implement

No performance penalty for coordination

Cons
May be tougher to recover

Tough/impossible to create consistent recovery line
Might end up with some inconsistent checkpoints

Could lead to cascading rollbacks (aka “domino effect”)

30(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

The Domino Effect

If the most recent checkpoint is inconsistent (i.e.,
includes a message reception but not its sending),
then system must recover to earlier checkpoint

But what if that one is also inconsistent?
And then the one before that one?

In worst case, we would have to undo all work and
recover to the beginning of execution

31(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

Domino Effect: Example

Rollback of X does not affect other processes.
Rollback of Z requires all three processes to roll back
to their very first recovery points.

32(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

Lost Massages

Message loss due to rollback recovery

33(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

Livelock

Livelock is a situation in which a single failure can
cause an infinite number of rollbacks, preventing
the system from making progress

34(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

Recovery Line

A strongly consistent set of checkpoints (recovery line) corresponds to
a strongly consistent global state.

there is one recovery point for each process in the set during the interval
spanned by checkpoints, there is no information flow between any

pair of processes in the set
a process in the set and any process outside the set

A consistent set of checkpoints corresponds to a consistent global
state.
Set {x1, y1, z1} is a strongly consistent set of checkpoints
Set {x2, y2, z2} is a consistent set of checkpoints (need to handle lost
messages)

35(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

Coordinated Checkpointing

To avoid cascading rollbacks, the processes can
coordinate when they take their individual
checkpoints

Pros (besides no domino effect!)
Easier/faster recovery

Can be more aggressive in garbage collection

Cons
More complex to implement

Coordination incurs a performance penalty

36(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

Blocking 4-phase Coordination

Algorithm for creating consistent checkpoint
1) Centralized coordinator broadcasts TakeCheckpoint
request to all processes to take checkpoint

2) Each process then takes a checkpoint and sends
acknowledgment to coordinator that it has completed

3) Centralized controller waits for all acks and then
broadcasts CheckpointDone message

4) Each process resumes execution

37(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

More Optimized Coordination

4-phase algorithm is slow because it is blocking
Some non-blocking algorithms are faster, but
more complex
Another alternative is to use synchronized clocks
to facilitate coordination

Each process takes checkpoint every N clock cycles
If clocks are perfectly synchronized, this works, but
that’s tough to do
Better yet, as long as clock skew is less than the
minimum communication latency between any two
processes, then this works

because a message can’t go backwards in time

38(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

Logical Time Coordination

Logical time clocks have been used to coordinate
checkpoints

Each node has its own logical clock
Each node takes “independent” checkpoint every N logical cycles

Logical time is a time basis that respects causality
If event A causes event B, then A must happen earlier in logical
time than B
E.g., sending of a message happens earlier than reception

Many logical time bases/algorithms exist
Loosely synchronized physical clocks (skew < min latency)
Token-passing among processes to advance logical time

Advantage of logical time coordination is that it is implicit
and non-blocking

Don’t have to stop to coordinate --- just look at local logical clock

39(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

I/O and the Outside World

Output commit problem – Can’t send uncommitted
data beyond sphere of recoverability

E.g., can’t tell printer to write check for $1M before we know
that’s the right amount

Standard solution: wait to communicate with I/O
Only send validated data to outside world

Problem: if it takes a long time for P1 to know that its most
recent checkpoint is part of a validated recovery line, then
output will be delayed a long time

but we can avoid this by using logging!

Input commit problem – Input can’t be recovered
Solution: augment checkpointing with input logging

40(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

Message Passing BER: Logging

Goals of logging
Speed up output commit by removing dependencies
between checkpoints

Solve the input commit problem

Different types of logging schemes
Pessimistic

Optimistic

41(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

Pessimistic Logging

Log every message reception before processing it
(and integrating its effects into execution)
If P1 detects error, P1 recovers to its most recent
checkpoint and replays messages log (only those
messages that arrived after checkpoint taken)

KEY: No need to recover any other process!

Since there are no longer any dependencies between
checkpoints on different processes, output commit
doesn’t require waiting to establish consistent
recovery line
Disadvantages:

Logging is on critical path (degrades performance)
Logs may take up lots of storage space

42(c) 2012, Mehdi Tahoori

Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

Optimistic Logging

Take message logging off the critical path
Let received messages affect the execution while they
are being logged in parallel

Assumes that it is very rare for an error to occur
between when message arrives and when it has been
logged

“Window of vulnerability”

Tradeoff: better performance vs. not as reliable

43(c) 2012, Mehdi Tahoori

