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Today’s Lecture

Backward error recovery
Checkpointing and Recovery

BER in uni-processor system 

BER in multi-processor systems
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Recovery - Basic Concepts 

Providing fault tolerance involves three phases 
Error detection 
Assessment of the extent of the damage 
Error recovery to eliminate errors and restart afresh 

Forward error recovery - the continuation of the 
currently execute process from some further point with 
compensation for the corrupted and missed data. The 
assumptions: 

The precise error conditions that caused the detection and 
the resulting damage can be accurately assessed 
The errors in the process (system) state can be removed 
The process (system) can move forward 
Example: exception handling and recovery 
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Recovery - Basic Concepts 

Backward error recovery - the current process is 
rolled back to a certain, error-free, point and re-
executes the corrupted part of the process thus 
continuing the same requested service. The 
assumptions: 

The nature of faults cannot be foreseen and errors in 
the process (system) state cannot be removed without 
re-executing 

The process (system) state can be restored to a 
previous error-free state of the process (system) 
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FER vs BER

5(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

Backward Error Recovery (BER)

If error detected, recover backwards & re-execute
Recover to previous state of system that we know is error-
free
Assumes that error will be gone before resuming execution

Some terminology:
Checkpointing: periodically saving state of system
Logging: saving changes made to system state
Recovery point: the point to which we recover in case of 
error

Many commercial machines use(d) BER
Sequoia, Synapse N+1, Tandem/HP NonStop

BER also includes all-software schemes
Nightly backups of file systems, database software, etc.
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Checkpoint and Rollback 

Applicability 
When time redundancy is allowed 
To transient hardware and many software design faults (e.g., timing 
faults) 
To both nonredundant and redundant architectures 
When it is feasible to determine checkpoints in an application 

Checkpointing
Maintains/saves precise system state or a “snapshot” at regular 
intervals 

Snapshot can be as small as one instruction 

Typically, checkpoint interval includes many instructions 

May not be ideal when there is much error detection latency 

Rollback recovery 
When error is detected 

Roll back (or restore) process(es) to the saved state, i.e., a checkpoint 

Restart the computation 
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BER Abstraction
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BER Performance

May sacrifice performance to achieve availability
Where might we lose performance?

May not be suitable for real-time systems
What are the alternatives?

9(c) 2012, Mehdi Tahoori

Reliable Computing I: Lecture 11

Checkpoint and Rollback: What do we need? 

Implement an appropriate error-detection 
mechanism 

Internal to the application: various self-checking 
mechanisms 

data integrity, 

control-flow checking, 

acceptance tests

External to the application 
signals (e.g., abnormal termination), 

missing heartbeats, 

watchdog timers 
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6 BER Issues

1) What state needs to be saved?

2) How do we save this state?

3) Where do we save it?

4) How often do we save it?

5) How do we recover the system to this state?

6) How do we resume execution after recovery?
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(1) What State To Save

Need to save all state that would be necessary if this were 
to become the recovery point
Process state 

Volatile states 
Program stack (local variables, return pointers of function calls) 
Program counter, stack pointer, open file descriptors, signal handlers 
Static and dynamic data segments 

Persistent states 
User files related to the current program execution (whether to include the 
persistent state in the process state depends on the application, e.g., the 
persistent state is often an important part of a long-running application) 

In general, we only need to save the user-visible state
For example, microprocessors:

Must save architectural state
Don’t have to worry about micro-architectural state
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(2) How to Save State

Two “flavors” of BER:
Checkpointing: Periodically stop system and save state

Logging: Log all changes to state

Checkpointing
Only incurs performance overhead at periodic checkpoints

Can only recover at coarse granularity

Size of checkpoint is often fixed

Logging
Finer granularity of rollback

Incurs overhead for logging many common operations

Amount of state logged is variable (but may have upper bound)

Hybrid approaches are also used
Why might these be useful?
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(3) Where to Save State

Have to save state where it is “safe”
A fault in the recovery point state could make recovery 
impossible

In processor (can’t survive loss of processor chip)
Processor saves registers to shadow registers

In cache (same as processor, if on-chip cache)
Processor copies registers into cache

In memory (memory can be made pretty safe)
Processor copies registers into memory
Write-through cache copies data into memory

In disk (arguably the safest, but slow)
E.g., databases log updates to disks

In tape (too slow except for rare backups)
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(4) When to Save State

Checkpointing
Can choose checkpoint interval
Determine checkpoint times based on 

Elapsed time 
Message received or sent, e.g., parallel or distributed applications 
Amount of dirtied state, e.g., database applications 
Critical function invocation/exit 

Logging
Continuously saving state (every time it changes)

For checkpointing, a larger checkpoint interval means
Less overhead due to checkpointing (since less frequent)
Coarser checkpoint granularity (can’t recover to arbitrary 
point)
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(5) How to Recover State

Checkpointing: 
Copy pre-fault recovery point checkpoint into architectural state

Logging: 
Unroll log to undo changes since recovery point

Tradeoff between these two depends on system
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(6) How to Resume Execution

Simply resuming execution after recovery may not 
be feasible

E.g., recovery due to hard fault in interconnection 
switch

May need to reconfigure before resuming, to 
ensure forward progress

E.g., reconfiguring the routing in interconnect to avoid 
dead switch

What if you can’t resume? Does BER still provide 
any benefits (in any metric)?
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Uniprocessor BER: What State To Save

Assume disks are safe storage 
(common assumption)

Checkpoint state = architectural state
Architectural registers (including program counter, etc.)

NOT micro-architectural state (e.g., branch predictor 
state)

Why not?

Memory (and caches)
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Uniprocessor BER: How/Where To Save State

Architectural registers
Copy them to shadow registers within processor
Or map them to memory and thus save them in cache 
(or memory)

Modified blocks in cache
Use write-through cache to copy cache state to memory
Or periodically flush all modified blocks to memory
Why don’t we save unmodified blocks in cache?

Dirty pages in memory
Periodically flush all dirty pages to disk
Why don’t we save clean pages?
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Uniprocessor BER: When To Save State

If we save after every instruction
Almost has to be done with logging (rather than 
checkpointing)
Enables finest granularity of recovery (but is this overkill?)
In OOO processor, must save precise state of system
Potentially high overhead

Logging takes time (but is it on critical path?)
Extra power consumption

If we save after every N instructions (N >> 1)
Coarser granularity  recovery is likely to have to go back 
farther in time and potentially undo more error-free work
But if errors are rare, this penalty won’t matter much
Overhead might be reduced by checkpointing (instead of 
logging)
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Uniprocessor BER: How To Recover State

Not possible if fault is in recovery point state!

Architectural registers
Copy them back from shadow registers

Load them back from where they were mapped in memory

Cache
Don’t have to do anything – state is already saved on 
memory/disk

Will get re-loaded with state after resuming execution

Memory
Don’t have to do anything – state is already saved on disk

Will get re-loaded with state after resuming execution
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Uniprocessor BER: How To Resume 
Execution

May not be possible if fault can’t be tolerated 
(even if we were able to recover from it)

E.g., hard fault in instruction fetch unit

Other examples?

For transient errors, nothing needs to be done 
before resuming execution
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Recovery in Distributed/Networked Systems 

Processes cooperate by exchanging information to 
accomplish a task 

Message passing (distributed systems) 
Shared memory (e.g., multiprocessor systems) 

Rollback of one process may require that other 
processes also roll back to an earlier state. 
All cooperating processes need to establish recovery 
points. 
Rolling back processes in concurrent systems is more 
difficult than for a single process due to 

Domino effect 
Lost messages 
Livelocks
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Recovery in Distributed/Networked Systems 

Two types of systems
Shared memory

Processors communicate via global shared memory

Loads and stores to shared memory used to transfer data

Message passing
Processors communicate via explicit messages

Goal: create consistent checkpoints (via checkpointing
or logging)

Consistent checkpoint = set of per-processor checkpoints 
that, in aggregate, constitutes a consistent system state

Recovery line = set of recovery points = consistent 
checkpoint
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Shared Memory BER

Must save uniprocessor state for all processors in 
the system

Must also save state that corresponds to 
communication between the processors

Cache and memory state

Includes cache coherence state
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Massage Passing BER

What state to save?
Uniprocessor state at each processor in system

Messages received
From other processes

From outside world (e.g., Internet)

State depends on whether communication is reliable or lossy

In a consistent checkpoint, it shouldn’t be possible for 
process P1 to have received message M from process P2 if 
P2’s checkpoint doesn’t yet include having sent M
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Local State

For a site (computer, process) Si, its local state LSi, at a 
given time is defined by the local context of the distributed 
application

send(mij) - send event of a message mij by Si to Sj

rec(mij) - receive event of message mij by site Sj

time(x) - time in which state x was recorded

We say that
send(mij)  LSi iff time(send(mij)) < time(LSi)
rec(mij)  LSj iff time(rec(mij)) < time(LSj)

Two sets of messages are defined for sites Si and Sj
Transit

transit(LSi, LSj) = {mij | send(mij)  LSi  rec(mij)  LSj}

Inconsistent
inconsistent (LSi, LSj) = {mij | send(mij)  LSi  rec(mij)  LSj}
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Global State

A global state (GS) of a system is a collection of the 
local states of its sites, i.e., GS = {LS1, LS2, …, LSn}, 
where n is the number of sites in the system. 
Consistent global state: 

A global state GS is consistent iff for every received 
message a corresponding send event is recorded in the 
global state

Transitless global state: 
A global state GS transitless iff All communication channels 
are empty

Strongly consistent global state: 
A global state that is both consistent and transitless

28(c) 2012, Mehdi Tahoori



Reliable Computing I – Lecture 11

KIT – University of the State of Baden-Wuerttemberg and 
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 11

Local/Global State - Examples

The global states: 
GS1 = {LS11, LS21, LS31} is a strongly consistent global state. 

GS2 = {LS12, LS23, LS33} is a consistent global state . 

GS3 = {LS11, LS22, LS32} is an inconsistent global state. 
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Uncoordinated Checkpointing

Each process independently takes checkpoint
Doesn’t coordinate with other processes

Pros
Easier to implement

No performance penalty for coordination

Cons
May be tougher to recover

Tough/impossible to create consistent recovery line
Might end up with some inconsistent checkpoints

Could lead to cascading rollbacks (aka “domino effect”)
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The Domino Effect

If the most recent checkpoint is inconsistent (i.e., 
includes a message reception but not its sending), 
then system must recover to earlier checkpoint

But what if that one is also inconsistent?
And then the one before that one?

In worst case, we would have to undo all work and 
recover to the beginning of execution
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Domino Effect: Example

Rollback of X does not affect other processes. 
Rollback of Z requires all three processes to roll back 
to their very first recovery points. 
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Lost Massages

Message loss due to rollback recovery
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Livelock

Livelock is a situation in which a single failure can 
cause an infinite number of rollbacks, preventing 
the system from making progress
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Recovery Line

A strongly consistent set of checkpoints (recovery line) corresponds to 
a strongly consistent global state.

there is one recovery point for each process in the set during the interval 
spanned by checkpoints, there is no information flow between any

pair of processes in the set
a process in the set and any process outside the set

A consistent set of checkpoints corresponds to a consistent global 
state.
Set {x1, y1, z1} is a strongly consistent set of checkpoints
Set {x2, y2, z2} is a consistent set of checkpoints (need to handle lost 
messages)
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Coordinated Checkpointing

To avoid cascading rollbacks, the processes can 
coordinate when they take their individual 
checkpoints

Pros (besides no domino effect!)
Easier/faster recovery

Can be more aggressive in garbage collection

Cons
More complex to implement

Coordination incurs a performance penalty
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Blocking 4-phase Coordination

Algorithm for creating consistent checkpoint
1) Centralized coordinator broadcasts TakeCheckpoint
request to all processes to take checkpoint

2) Each process then takes a checkpoint and sends 
acknowledgment to coordinator that it has completed

3) Centralized controller waits for all acks and then 
broadcasts CheckpointDone message

4) Each process resumes execution
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More Optimized Coordination

4-phase algorithm is slow because it is blocking
Some non-blocking algorithms are faster, but 
more complex
Another alternative is to use synchronized clocks 
to facilitate coordination

Each process takes checkpoint every N clock cycles
If clocks are perfectly synchronized, this works, but 
that’s tough to do
Better yet, as long as clock skew is less than the 
minimum communication latency between any two 
processes, then this works 

because a message can’t go backwards in time
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Logical Time Coordination

Logical time clocks have been used to coordinate 
checkpoints

Each node has its own logical clock
Each node takes “independent” checkpoint every N logical cycles

Logical time is a time basis that respects causality
If event A causes event B, then A must happen earlier in logical 
time than B
E.g., sending of a message happens earlier than reception

Many logical time bases/algorithms exist
Loosely synchronized physical clocks (skew < min latency)
Token-passing among processes to advance logical time

Advantage of logical time coordination is that it is implicit 
and non-blocking

Don’t have to stop to coordinate --- just look at local logical clock
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I/O and the Outside World

Output commit problem – Can’t send uncommitted 
data beyond sphere of recoverability

E.g., can’t tell printer to write check for $1M before we know 
that’s the right amount

Standard solution: wait to communicate with I/O
Only send validated data to outside world

Problem: if it takes a long time for P1 to know that its most 
recent checkpoint is part of a validated recovery line, then 
output will be delayed a long time

but we can avoid this by using logging!

Input commit problem – Input can’t be recovered
Solution: augment checkpointing with input logging
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Message Passing BER: Logging

Goals of logging
Speed up output commit by removing dependencies 
between checkpoints

Solve the input commit problem

Different types of logging schemes
Pessimistic

Optimistic
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Pessimistic Logging

Log every message reception before processing it 
(and integrating its effects into execution)
If P1 detects error, P1 recovers to its most recent 
checkpoint and replays messages log (only those 
messages that arrived after checkpoint taken)

KEY: No need to recover any other process!

Since there are no longer any dependencies between 
checkpoints on different processes, output commit 
doesn’t require waiting to establish consistent 
recovery line
Disadvantages:

Logging is on critical path (degrades performance)
Logs may take up lots of storage space
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Optimistic Logging

Take message logging off the critical path
Let received messages affect the execution while they 
are being logged in parallel

Assumes that it is very rare for an error to occur 
between when message arrives and when it has been 
logged

“Window of vulnerability”

Tradeoff: better performance vs. not as reliable
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