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Abstract—The power consumption of computing systems is nowadays
a major design constraint that affects performance and reliability. To co-
optimize these aspects, fine-grained adaptation techniques at runtime are
of growing importance. However, to use these tools efficiently, fine-grained
information about the power consumption of various on-chip components
at runtime is required. Therefore, here we propose a novel software-
implemented high-resolution (spatial and temporal) power monitoring
approach that relies on micro-models to estimate the power consumption
of all microarchitectural components inside a processor core. Combined
with a self-calibration technique that uses an available on-chip power
sensor, our power estimation approach can achieve an accuracy of more
than 99 % and provides deep insights about the power dissipation inside
a processor core during workload execution.

I. INTRODUCTION

In recent years, the microprocessor power consumption emerged to
be a major design aspect [1]. Moreover, due to the end of the Dennard
scaling model [2], the power density increases with downscaling,
which affects the microprocessor reliability [3]. Especially thermally
accelerated effects such as wearout are nowadays a major issue [4].

To meet the power and reliability constraints, while maintaining
a high performance, modern systems and processors employ various
power and thermal management techniques such as task migration,
power and clock gating, as well as Dynamic Voltage and Frequency
Scaling (DVFS) [S]-[7]. In fact, to use these tools efficiently, i.e. to
co-optimize performance, reliability and power, detailed and accu-
rate power information of various on-chip components during the
workload execution is necessary. In this regard, the efficiency of
the adaptation (performance penalty vs. power/temperature reduction)
strongly depends on the available spatial power information. In
particular, the final system performance employing more localized
adaption techniques will be considerably better [8].

Therefore, several methods to monitor the power consumption
at runtime at different granularities have been explored. These
can be classified into two categories: 1) Direct measurements via
sensors [5], [9]; 2) Indirect estimation using information about the
resource utilization [7], [10]-[15]. The advantages of the first class of
approaches are the high temporal resolution and the high accuracy of
the obtained power values. However, the spatial resolution is poor,
as only few sensors are employed due to their high costs [7], [9].
The approaches in the second category are considerably cheaper, as
no additional hardware is required. Instead, available performance
counters are used in combination with analytical models for power
estimation. However, due to massive chip-to-chip variations in the
nanometer era and time-based variations due to voltage, frequency
and temperature (VFT) changes, linear regression approaches [10]—
[14] are often very inaccurate [16]. Moreover, many models can only
monitor the power consumption at core-granularity (i.e. low spatial
resolution) [10]-[14]. Just very few approaches such as [15] can
model the power consumption of microarchitectural components such
as caches, execution units or instruction decoders (i.e. high spatial
resolution). However, as these models are very complex, they cannot
be used at runtime (i.e. low temporal resolution). In summary, an
accurate and cheap power estimation methodology with a high spatial

(i.e. per microarchitectural component) and temporal resolution, that
can drive fine-grained system adaptation, is still missing.

In this work we present a novel power estimation and monitoring
approach that closes this gap. It is based on fine-grained models,
i.e. power can be estimated for all microarchitectural components
and VFT changes are taken into consideration. Yet, its temporal
resolution is high enough (every 1-10ms) to obtain the power
consumption during workload executions. Moreover, our approach
uses an available on-chip sensor to calibrate itself to minimize the es-
timation inaccuracy. Finally, the entire approach is generic, and thus,
can be applied to different microprocessor architectures or different
technologies. Our experimental results, based on measurements for
different Intel processors manufactured in different technology nodes,
show that the average inaccuracy for various applications is less than
1%. Hence, our method is as accurate as an on-chip sensor, and
in addition it reveals deep insights about the power behavior of the
different microarchitectural components. Nevertheless, it is as flexible
and low-cost as an analytical model running in software/firmware.

II. MOTIVATION

In this section, we present two examples that motivate the need
for fine-grained power knowledge with high spatial and temporal
resolution, that can combine high performance and high reliability.

If the power consumption of each microarchitectural block is
available, only those blocks that consume too much power are
targeted by fine-grained adaptation techniques. In contrast, if only
per-core power information is available, and the combined power
consumption is too high, the entire core has to be “reconfigured”
(e.g. lower supply voltage and frequency). As a consequence, this
per-core adaptation costs more performance [8], as the fine-grained
changes reduce the throughput only for a small number of domains,
while the majority can still operate as before.

Moreover, by having detailed power information, it is possible
to predict temperature hotspots more accurately (in time and space)
as temperature follows power. Hence, a proactive adaptation can be
performed to avoid a critical temperature before it actually occurs.
As a result, reliability can be significantly improved [18]. Instead, if
only per-core power information is accessible, thermal hotspots may
not be identified. This issue is illustrated in Fig. 1. Here, the power

(a) Fine-grained power estimation
with 100 domains

(b) Coarse-grained power estimation
with 1 domain

Fig. 1. Two cores with the same power consumption, but different
temperature due to different power distribution (extracted with HotSpot [17])



[ Special Purpose Registers (SPRs) [ Functionality

[ Micro-Model Usage [ Monitored Component ]

L2_TRANS_ALL_X
UOPS_DISPATCHED_PORT_X
INSTS_RETIRED.ANY
CPU_CLK_UNHALTED_*
BR_*_ALL_BRANCHES
MEM_UOPS_RETIRED_X
IDQ_MITE_ALL_UOPS
FP_COMP_OPS_EXE.*, SIMD_FP_256.*

Retired instructions
Active cycles of the entire core
Executed branches

Decoded micro-instructions
Scalar/Vector FP operations

L2 operations with X=Read/Write/Total
Dispatched instructions at port X

Retired memory operations with X=Load/Store

L2Cache, DCache
Execute, LSU, Registers, Scheduler
Fetch, Retire
Overall core
Branch Predictor
LSU, TLB, DCache
ICache, Fetch, Decode, ROB
Execute

L2 accesses (read/write/hit/miss)
Instructions for each functional unit
Total instruction count
Total/Busy/Idle cycles
Total/Mispredicted branch count
Memory operations (load/store)
Decoded instructions
FP/Vector operations

TABLE 1
EMPLOYED SPRS FOR THE PROPOSED POWER ESTIMATION (HERE FOR INTEL PROCESSORS)

density in the upper right chip corner is considerably higher than in
the remaining part, which leads to a thermal hotspot. This hotspot
can be detected, only if fine-grained power information is available,
otherwise it remains undetected. Also, a temperature sensor does not
detect this hotspot, as long as it is not placed in the affected area.
In summary, fine-grained power information at runtime is manda-
tory for effective power management and reliability-aware policies.

III. HIGH-RESOLUTION POWER MONITORING

Based on the previous motivation, the general idea behind our pro-
posed fine-grained power estimation approach is to obtain the power
consumption of each microarchitectural block (domain). Therefore,
each domain has its own power model (micro-model) that takes
supply voltage, frequency, temperature and resource utilization into
account. While the first three aspects can be usually accessed directly
by reading certain Special Purpose Registers (SPRs) [5], [7], the
utilization has to be obtained indirectly via performance counters.
Having all this data, the dynamic and static power can be estimated
for each domain, and thus also the combined power can be calculated.

The two major challenges of this approach are: 1.) Development of
accurate yet fast micro-models that take VFT changes into account;
and 2.) Finding appropriate performance counters to estimate the re-
source utilization and accessing them frequently (i.e. every 1-10 ms).
In this work, we employ the micro-models from McPAT [15], which
is a power estimation framework containing physical power models
for all microarchitectural blocks in modern processors. These models
are based on technology data and use the supply voltage, temperature
and clock frequency as well as a variety of performance statistics as
inputs to compute the power. The technology data (threshold voltage,
oxide thickness, currents, feature size, etc.) for these models is based
on the ITRS roadmap for technology nodes ranging from 90 nm to
16 nm. As a result of these detailed models, a power estimation
with high spatial resolution can be achieved. However, the default
models from McPAT are infeasible for a runtime power estimation
with a high temporal resolution. This is due to the fact that these
are computational intensive and that whenever a parameter (V,ET)
changes, all models have to be rebuilt which requires several seconds.
Altogether this results in an evaluation time of several minutes, if the
power consumption of a workload running for a few seconds should
be analyzed. Therefore, we enhanced the models to be faster without
impacting their accuracy. The first step was to remove all unnecessary
computations. For example, McPAT always calculates the worst-case
power for the last time period beside the actual power consumption.
Since this worst-case data is not required for our power monitoring
approach, such computations could be easily removed. In addition,
we updated the micro-models according to the Equations (1) and
(2) to take VFT changes into account [19] without requiring a re-
initialization.
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At runtime Vg (supply voltage), T' (temperature) and f (clock
frequency) are obtained from SPRs (here: IA32_PERF_STATUS
and IA32_THERM_STATUS). The (constant) fitting parameters
a,b,a, B,7,0 that describe the temperature and voltage impact on
the static power were extracted using McPAT’s default static power
model. As a result of these modifications, the time required to
estimate the power consumption of all microarchitectural blocks
within a single core is less than 50 us for an Intel Core i5-2400
compared to 7.7 s (five orders of magnitude improvement). Hence, if
the power estimation is performed once every 10 ms, our model can
be used to monitor the power consumption of a workload, without
inferring a huge performance penalty (< 0.7 %). Please note that this
temporal resolution is more than enough to drive system adaptations,
as pointed out in [10].

Beside the micro-models themselves, it is a challenge to select
and frequently access the performance counters that are required
to feed the micro-models. In particular, the access is a very de-
manding task, as various SPRs (here: 31) need to be accessed
at almost the same time (to make sure that the gathered data is
correlated). Therefore, we developed our own access routines to meet
the tight timing constraints. These are written in C++ and use the
/dev/cpu/CPUNUM/msr interface of Linux to access the required
SPRs. As soon as all data for the last time period is gathered, this
data is directly fed to the micro-models such that the overall power
estimation time is less than the mentioned 50 us.

The selection of appropriate SPRs is challenging as well, although
the micro-models require very specific input data about the resource
utilization of each microarchitectural block. The difficulty arises from
the fact that for many microarchitectural components the utilization
cannot be directly obtained from a single SPR. In fact, for most of
the blocks a combination of several SPRs has to be considered. For
example, the Intel processors of our experimental case study (see
Section V) do not allow to directly count the number of instruc-
tions executed by ALUp. Instead, only the number of instructions
dispatched via Porty can be accessed. However, this port is also
used by FPUy. Thus, the number of dispatched instructions at Portg
is obtained, and by using additional SPRs also the overall ratio of
integer to floating point instructions is extracted. Finally, using both
information together, an approximation for the number of instructions
executed by ALUp is computed and used by the corresponding
micro-model. Consequently, for the specific Intel processors we
employed for our study, in total 31 SPRs had to be accessed, although
the number of microarchitectural components is considerably lower.
Three of the SPRs are employed to obtain the clock frequency, supply
voltage, temperature as well as the combined power consumption for
all cores (here: MSR_PPO_ENERGY_STATUS). The remaining 28
SPRs, detailed in Table I, are used to infer the resource utilization.

Please note that the same temperature is used by all micro-models
that belong to one core, as usually only the per-core temperature
is available. To alleviate this issue, an analytical temperature model
such as hotspot [17] can be added to the framework to use more
accurate temperature data, and thus increase the overall accuracy.



Putting all this together results in a fine-grained power estimation
approach with high temporal and spatial resolution (evaluation every
1-10ms for all microarchitectural components) that considers VFT
changes at runtime.

It is important to note that this approach is platform independent.
Hence, once the technology parameters are set and the required
performance counters are selected, the power model can be applied to
all processors of the same family (i.e. same architecture and process
technology). If the architecture or technology node changes, only the
corresponding parameters have to be adjusted, e.g. the number of
functional units or accessed SPRs (architecture) or threshold voltage
(technology), while the underlying framework can be kept. This is
a great advantage over regression-based techniques that require a
new training every time a single parameter changes. However, as mi-
croprocessors fabricated at nanoscale CMOS nodes have significant
process, and thus power consumption variation, also a non-calibrated
micro-model estimation can be very inaccurate from one chip to
another. Therefore, our power estimation technique makes use of a
single available on-chip power sensor to calibrate the micro-models
at runtime (see Section IV). Consequently, our proposed technique
delivers very accurate results (see Section V).

In a real system the micro-models and the required SPR accesses
should be handled by a firmware or driver which runs in the
background as part of the operating system. Ideally, it is provided by
the manufacturer directly to have lightweight and accurate models.
Nevertheless, also opensource solutions like the one presented in this
paper based on McPAT can provide good accuracy and resolution.

IV. SELF-CALIBRATION METHODOLOGY

As mentioned in the previous section, self-calibration for power
estimation approaches is nowadays required, due to huge amount
of process variation. This variation cannot be captured by the micro-
models using the Equations (1) and (2), as the underlying technology
data is inherently incapable to account for chip-to-chip and core-
to-core variations. Therefore, a single available power sensor can
be accessed at runtime to calibrate the model such that it delivers
accurate power estimation results irrespective of the process corner
the chip belongs to. Another reason to use a power sensor for
calibration is the fact that all software-based models, including our
proposed technique can only capture an “average” behavior of the
system. For example, the estimated power consumption for an ALU
will always be the same, no matter if the accesses are simple AND
operations or complex 64-bit additions. This under- or overestimation
of workload influences on the power consumption can be reduced
with a calibration technique.

To improve the accuracy of our power estimation technique we use
a periodic self-calibration method based on an exponential moving
average (EMA) correction, which is calculated as follows:
+(1—a) st (3)

Preal,1
§1= ——, St
Pest,1

—a- Preal,t
Pest,t
In this regard, prcai,: is the real power consumption at step ¢ obtained
from an on-chip power sensor, pest,: is the corresponding estimated
power consumption, and « reflects the influence of past power values
as well as the actual one. For this work, « is set to 0.9. If « is
smaller, sudden workload changes that are not captured by the micro-
models (e.g. ADD instead of AND operations) will not be corrected
fast enough. On the other hand, if « is larger, the history effect
vanishes, which means that the calibration is only dependent on the
current estimation error but not on the history. The result of the EMA
calculation, s¢, is used as correction factor by our self-calibration
approach for all micro-models, i.e. Pest,t,new = St * Pest,t-

Intel Core 15-2400 (32 nm, 1.6 GHz-3.1 GHz, 1.06 V-1.22'V)
Intel Core i5-3450 (22 nm, 1.6 GHz-3.1 GHz, 0.88 V-1.07 V)
All sleep modes + DVFS activated
Linux Kernel 3.2 / SPEC2006
Power estimation & Update of EMA: Every 1 ms
Update of correction factor: Every 10 ms
TABLE II
EXPERIMENTAL SETUP

Processor

OS / Benchmarks

Measurements

Furthermore it is important to note that using this self-calibration
approach, the power consumption of all sub-core components is
adjusted with the same factor. This is very reasonable, since our
results show that not a single microarchitectural block is responsible
for the estimation inaccuracy. If this was the case, an additional
training for the corresponding micro-model would be required before
all components could be adjusted with same factor.

V. EXPERIMENTAL RESULTS

In order to evaluate the accuracy and performance overhead of
our proposed online power estimation approach, we employed the
technique in a real system with the configuration shown in Table II.
For the calibration the available on-chip power sensor is employed
(accessed via the SPR which measures the combined power con-
sumption of all cores including their L1- and L2-caches. Moreover,
we used the on-chip temperature sensor to obtain information about
the per-core temperature which is used by our power models. As
workloads we use the SPEC2006 benchmark suite. Since these ap-
plications are single-threaded, we execute four instances in parallel to
fully utilize the quad-core processors. The power estimation interval
is set to 1 ms to demonstrate the capabilities of our proposed power
monitoring methodology. As a result, the performance impact due
to the additional computations for accessing 119 SPRs (29 SPRs for
each core plus the SPRs for voltage, frequency and combined power)
and estimating the power consumption is around 6 % on average over
all workloads. If the monitoring interval is extended to 10 ms, which
is still fine-grained enough according to [10], the performance impact
is less than 0.7 %. In addition, if at least one core is not used, there
is no performance overhead at all. Beside a performance impact,
the additional calculations also infer an energy overhead. However,
since the average power consumption decreases due to switching
threads (from workload to power model and back), the average energy
consumption increases by less than 6 % for a monitoring interval of
1ms. In case of 10 ms time steps, the overhead is negligible.

The first observation is depicted in Fig. 2, namely that our
model can capture the workload trend including VFT changes at
runtime very accurately, even if the self-calibration is not used. This
behavior can be seen in all applications. Hence, we can conclude
that our micro-models can capture the workload impact on different
microarchitectural blocks very well. Otherwise, there would be one
benchmark in which the estimated power trend would not match
the real power trend. Please note that due to the lack of sensors
in the different components, only this indirect proof of accuracy
is possible. Of course, the power estimation without calibration is
inaccurate when looking at the absolute power numbers, which is due
to the fact that the technology models do not capture the impact of
process variation and that the models are based on ITRS predictions.
With more accurate technology data, the inaccuracy would be lower.
However, if the self-calibration is employed, the inaccuracy for the
combined power consumption is reduced to a negligible value. Over
all SPEC2006 applications the average and maximum estimation error
is less than 0.1 % and 0.4 % respectively for both processors, i.e. for
different technology nodes. Compared to the linear regression based
model proposed in [13] that estimates the combined power for each
core, our model is much more accurate. In particular, it can capture
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Fig. 2. Power consumption of two applications for the Intel Core i5-3450 (measured=sensor readout)

the workload trend, which is not possible with simpler models as
shown in Fig. 2(a). As a result, it is impossible with these simpler
models to get any accurate sub-core information.

As described in Section IV, our self-calibration technique continu-
ously compares the estimated and the measured power consumption,
and if there is a mismatch the correction factor is adjusted. We
observed that this correction factor converges very fast to 1 after a
short period at the beginning of a workload, i.e. no further correction
is applied. Only if in the following very sharp power gradients
occur, the power estimation becomes inaccurate again, and hence
the correction factor deviates in these cases from 1. In both cases
the inaccuracy is due to two reasons: 1) At the beginning as well as
in case of sharp power gradients, frequency and supply voltage are
typically not very stable. However, as those parameters are read only
every 1 ms, the “reaction” of the power estimation is slightly delayed
and hence not very accurate. 2) The SPR values reflect the average
behavior in the last period and hence are a kind of low-pass filter,
which makes it hard to capture almost instantaneous power changes
that can arise from waking up or sending a component from/to sleep.

Beside having an accurate core-level power estimation, it is also
possible to get deep insights about the power consumption of different
microarchitectural components as shown in Fig. 3. In other words, our
monitoring framework increases the spatial resolution of the single
sensor employed for the calibration.

VI. CONCLUSION

The microprocessor power consumption is a major design con-
straint, which affects performance and reliability. Therefore, it is
of decisive importance to co-optimize performance, reliability and
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Fig. 3. Power trace for the execution unit as well as Fetch+Decode of a

single core (Intel Core i5-3450, gcc benchmark)

power at runtime by applying fine-grained adaptation techniques.
However, to use these efficiently, accurate information about the
power consumption with a high spatial and temporal resolution
is required. For this purpose, we presented in this work a novel,
software-implemented high-resolution power monitoring approach to
obtain the power consumption of all microarchitectural components
at runtime. In addition, it is platform independent and considers
voltage, frequency and temperature changes at runtime. Moreover,
it employs a self-calibration technique that uses the information of
a single on-chip power sensor to improve the estimation accuracy.
By this means, an estimation accuracy of more than 99 % can
be achieved. Hence, it is as accurate as an on-chip sensor and
in addition capable of monitoring the power behavior of various
microarchitectural components. Nevertheless, it is as flexible and low-
cost as an analytical model running in software.
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