
704 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 5, MAY 2014

Aging-Aware Design of Microprocessor
Instruction Pipelines

Fabian Oboril and Mehdi B. Tahoori

Abstract—As complementary metal–oxide–semiconductor
technologies enter nanometer scales, microprocessors become
more vulnerable to transistor aging, mainly due to bias
temperature instability and hot carrier injection. These
phenomena lead to increasing device delays during the
operational lifetime, which result in growing delays of the
instruction pipeline stages. However, the aging rates of different
stages are different. Hence, a previously delay-balanced pipeline
becomes increasingly imbalanced resulting in a non-optimized
design in terms of lifetime [i.e., mean time to failure (MTTF)],
frequency, area, and power consumption. In this paper, we
propose an aging-aware, MTTF-balanced pipeline design,
in which the pipeline stage delays are balanced at the
desired lifetime rather than at design time. This can lead to
significant MTTF (lifetime) improvements as well as additional
performance, area, and power benefits. Our experimental results
show that for two different microprocessors, MTTF can be
extended by at least 2.3 times while achieving an additional
10 % energy improvement with no penalty on delay and area.
If the demand for performance is higher than that for a longer
MTTF, it is also possible to improve the clock frequency by 2 %.

Index Terms—BTI, HCI, instruction pipeline, microprocessor,
transistor aging.

I. Introduction

NOWADAYS almost all microprocessors ranging from
low-power embedded parts to high-performance proces-

sors use a pipelined architecture to increase the instruction
throughput and by that means the performance [18]. To max-
imize the performance, designers follow the same paradigm
since the dawn of the first pipelined microprocessors. They
try to balance all pipeline stage delays at design-time called
the delay-balanced pipeline. The advantage of this approach
was the combination of high throughput together with efficient
energy and area usage. This was due to the fact that as long
as a pipeline stage is faster than the slowest one (which
determines the clock frequency), it can be often made slower
by using gate sizing or higher threshold voltage to save energy
and die area [13], [20].

Manuscript received August 7, 2013; revised October 17, 2013; accepted
December 16, 2013. Date of current version April 17, 2014. This work
was supported in by the German Research Foundation (DFG) as part of the
National Focal Program “Dependable Embedded Systems” under Grant SPP-
1500. This paper was recommended by Associate Editor Y. Cao.

The authors are with Karlsruhe Institute of Technology, Karlsruhe 76131,
Germany (e-mail: fabian.oboril@ira.uka.de; mehdi.tahoori@ira.uka.de).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2014.2298333

However, with the ongoing aggressive transistor scaling of
complementary metal–oxide–semiconductor (CMOS) technol-
ogy, reliability expressed in mean time to failure (MTTF)
is becoming an important design constraint, together with
performance, power and area [5], [7], [33]. Transistor aging
due to bias temperature instability (BTI) [39], [49] and hot
carrier injection (HCI) [44] leads to increasing path delays
and so degrades pipeline stage delays during runtime. Hence,
nowadays the clock frequency of the shipped parts can no
longer be set according to the worst-case delay at design time
(tdesign). Instead, manufacturers have to add safety margins to
their delay-balanced designs, to ensure that the chips will be
functional for a certain lifetime (ttarget).

As we will show in this paper, the wearout rates (i.e., delay
increase due to BTI and HCI) vary widely among pipeline
stages, due to different temperature and usage rates. For ex-
ample, our experimental results show that the execution stage
of the FabScalar microprocessor [12] has a 17 times higher
delay increase than the retire stage1 within the first three years.
Hence, although the original pipeline was delay-balanced, after
some operational runtime the stage delays become highly
imbalanced. This also affects MTTF2 of different pipeline
stages, which varies tremendously (more than 20 times). Thus,
one stage can fail due to timing violations while others are still
executing correctly. Obviously such a design can be further
improved. Slow-aging stages should have less slack to save
area and energy, while fast-aging stages should have more
slack, to improve the overall MTTF.

In this paper, we propose a radically new MTTF-
balanced pipeline design scheme to replace the traditional
delay-balanced paradigm. Using this paradigm the MTTF
values of all pipeline stages are balanced, instead of the design
time delays. As a direct consequence, the stage delays will be
balanced at ttarget (which is the targeted MTTF) rather than at
tdesign. By that means, the full optimization potential for MTTF,
area, power, and performance can be exploited. We demon-
strate and investigate these benefits using two complementary
microprocessors. First, we use FabScalar, an out-of-order,
11-stage superscalar microprocessor. As a second case study,
we apply the proposed design methodology to OpenSPARC T1
[1], which is an industrial, in-order, four-way simultaneous
multithreading (SMT) processor with six pipeline stages. In

1In out-of-order processors the retire stage restores the original instruction
order after the out-of-order execution.

2In this paper MTTF is equal to the time until first timing violation due to
aging occurs.

0278-0070 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

OBORIL AND TAHOORI: AGING-AWARE DESIGN OF MICROPROCESSOR INSTRUCTION PIPELINES 705

summary, our MTTF-balanced approach yields a more than
2.3 times longer MTTF, while achieving the same performance
(i.e., frequency) compared to the delay-balanced design. In
addition, the energy consumption can be reduced by roughly
10 % and also the area can be slightly improved. If an
improved MTTF is of secondary interest, the gained headroom
can be used to increase the clock frequency by 2 % for a
lifetime of three years.

In summary, the key contributions of this paper are as
follows.

1) To avoid imbalanced pipeline stage MTTFs and im-
prove the microprocessor design in four dimensions
(performance, area, power and reliability), we propose
a novel, generic aging-aware pipeline design paradigm
applicable to any in-order and out-of-order processor:
MTTF-balanced pipeline design.

2) To obtain such a design, we provide a detailed design
methodology based on standard commercial synthesis
tools that describes the design process for such a
pipeline.

3) We present a comprehensive evaluation of the benefits
of a MTTF-balanced pipeline design for two different
microprocessors in terms of performance, lifetime, area
and energy consumption.

A preliminary version of this paper was published in [37].
In this paper we extend our preliminary work by investigating
OpenSPARC T1 as a second processor. Moreover, we pro-
pose various runtime enhancements for the MTTF-balanced
pipeline design flow which significantly reduce the runtime
by several folds. In addition, we analyze the trade-off between
time consuming post-synthesis gate-level simulations to obtain
accurate aging estimations and fast presynthesis high-level
simulations in terms of speedup and accuracy.

The rest of this paper is organized as follows. In Sec-
tion II, the BTI and HCI phenomena are introduced followed
by a discussion of related work. The new design paradigm
is motivated in Section III, followed by the presentation
of the proposed MTTF-balanced design paradigm itself in
Section IV. In Section V, the flow to extract MTTF for each
stage is explained. Afterward we present in Section VI our
experimental results. Finally, Section VII concludes the paper.

II. Background on Transistor Aging

Transistors degrade mainly due to BTI and HCI [5]. Both
effects lead to a threshold voltage shift of the impaired
transistors, which manifests in increasing gate and path delays.
Hence, these effects increase the pipeline stage delay during
runtime. In this section, the impact on threshold voltage is
explained. Afterward, some related work is discussed.

A. BTI

BTI appears in two difference types, i.e., negative BTI
(NBTI) and positive BTI (PBTI). While NBTI affects pMOS
transistors, PBTI degrades nMOS transistors and emerge as
a reliability issue with the introduction of high-k gate oxides
[39]. In both variants, BTI consists of two different phases.

TABLE I

Impact of different parameters on BTI and HCI

BTI HCI
Temperature (T) exponential exponential
Frequency (f) - sublinear

Voltage (Vdd) exponential exponential
Exec. Time (t) sublinear sublinear

Usage (δ, α) sublinear sublinear

When a logic “0” (logic “1”) is applied at the gate of a pMOS
(nMOS) transistor, this transistor is under (NBTI/PBTI)-stress.
During that phase, traps are generated in the interface between
gate oxide and channel, which increases |Vth|. In contrast,
when a logic “1” (logic “0”) is applied at the gate of the same
transistor, some traps are filled, which leads to a decreasing
|Vth| (recovery phase). However, the initial shift cannot be
entirely compensated leading to an overall Vth drift over time.
Thereby, the shift depends on several different aspects, e.g.,
temperature T and the ratio between the time a transistor
is under stress and total time (duty cycle δ). For estimating
the Vth shift the model presented in [49] is used. With this
analytical model it is possible to make a long term prediction
of the Vth shift for a couple of years. Thereby, �Vth at time
t > 0 is given by

�Vth(δ, T, t) =

(√
K2

υ · δ · tm

1 − β(δ, T, t)1/2n

)2n

(1)

where n, is a technology dependent constant. The other
parameters can be found in [49].

B. HCI

HCI mainly affects nMOS transistors, where accelerated
electrons inside the channel collide with the gate oxide
interface and thereby create electron-hole pairs. Thus, free
electrons get trapped in the gate oxide layer, which leads to
an increasing Vth. In contrast to BTI, the Vth shift due to HCI
is irreversible [49]. The Vth shift has an exponential relation
with temperature [8], and since “hot” energetic electrons are
generated when the nMOS transistor is making a transition, the
Vth shift is also very sensitive to the number of transitions [44],
i.e., clock frequency f , runtime t and switching activity α.
Putting all this together leads to the model detailed in [35],
which we use in this paper for estimating the Vth shift

�Vth(α, T, t) = AH · exp(−Ea/kT) ·
√

α · f · t. (2)

AH and Ea are technology dependent constants, and k is the
Boltzmann constant. Note that the temperature relation for
technologies using feature sizes larger than 100 nm is reversed
[8].

C. Related Work

1) Aging Mitigation: In order to alleviate the effects of BTI
and HCI, the microelectronic industry including Intel [3], IBM
[32], and TSMC [51] spends a great deal of effort on finding
new device technologies (e.g., material compounds) that result
in lower aging rates. Nevertheless, aging mitigation techniques

706 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 5, MAY 2014

are still a necessity. Therefore, several schemes and design
techniques are proposed of which we name just a few ones.
At device- and circuit-level aging-aware gate sizing [40], [52],
power gating [9], and Vth-tuning [47] can mitigate the effect of
BTI. Based on these techniques an NBTI-resilient processor
is introduced in [2]. Furthermore, body biasing techniques
[21], stacking-based pin reordering [47], input vector control
[50] as well as internal node control [6] and aging-aware
path balancing [15], [27] can be used to compensate or slow
down the Vth-degradation due to BTI and HCI.

Furthermore, various techniques at (micro)architecture-level
are proposed to mitigate the impact of transistor aging. Most of
these solutions focus on the execution units of a microproces-
sor, since these are typically the lifetime-limiting factors [14],
[37]. Various instruction scheduling techniques are evaluated
in [10], [34], [42] that aim at increasing the lifetime of the
functional units. Firouzi et al. [16] use an aging-aware no
operation (NOP) instruction to alleviate the impact of NBTI
on the ALU of an MIPS processor, which can be used for
other execution units as well. Besides these techniques, in [17]
it is proposed to periodically invert the instruction opcode to
alleviate aging in the pipeline frontend. Wearout of this part
of the pipeline is also addressed by an aging-aware instruction
set encoding in [38]. Also, various techniques address wearout
in memory elements, such as [26] and [28], that use cell-
flipping in order to make the duty-cycle close to 0.5. Another
approach presented in [48] is intended to mitigate BTI-induced
degradation in a register-file by flipping the leading bits of
narrow-width values periodically.

At higher abstraction layers, enhanced application schedul-
ing techniques [46] and various dynamic runtime adaptation
techniques such as dynamic voltage and frequency scaling
(DVFS) approaches [4], [22], [31], [36] or adaptive body
biasing (ABB) techniques [46] are proposed to address BTI-
and HCI-induced wearout.

In summary, all of the aforementioned techniques can be
classified into two categories, namely, design-time approaches
and dynamic runtime techniques (e.g., power gating, schedul-
ing, DVFS, adaptive body biasing, and cell flipping). Our
methodology belongs to the first category and is hence orthog-
onal to all dynamic runtime techniques. As a result, all of them
can be used in combination with our method. For that purpose,
it is just necessary to take the applied techniques during the
aging estimation step into account to avoid an overestimation
of the wearout rates (i.e., underestimation of MTTF) and
hence imbalanced pipeline design. In addition, the mentioned
design-time techniques are complementary to our work as
these focus on circuit- and also on device-level, while our
approach addresses the microarchitecture-level. Hence, these
approaches can also be combined with our design paradigm.

2) Aging Estimation Flows: In [14], a flow to estimate the
delay degradation of a pipeline stage is introduced, which is
similar to the flow presented in Section V. However, this flow
can only extract lower and upper bounds for aging induced
delay-degradation, but not the real value that is necessary to
obtain a balanced pipeline design. Another aging estimation
flow is presented in [37]. Although this one is very accurate,
it is very time consuming (takes up to several days to extract

power, temperature and wearout for all pipeline stages). Hence,
it is infeasible for large designs. Instead, the flow used in
this paper needs less than two minutes to perform the aging
estimation.

3) Pipeline Delay Balancing: In the context of pipeline
delay rebalancing, a famous technique is cycle-time steal-
ing/borrowing. For example in [29] and [45], such approaches
are proposed to rebalance the pipeline delay due to process
variation. Cycle time is “stolen” from fast stages and given to
slow stages, so that the pipeline can operate at a clock period
closer to the average stage delay. Potentially, this idea can be
used similarly to our MTTF-balanced design paradigm. Stages
that have high aging rates, take some cycle time from stages
with lower aging rates to increase their MTTF. However, using
these techniques, cycle time has to be redistributed, which is
a complex task and not always possible. Instead, our design
paradigm does not require a redistribution of cycle time, which
makes our technique suitable for almost every design.

Another rebalancing technique using cycle-time borrowing
is presented in [41], which is intended to balanced the power
consumption of different pipeline stages. Due to this, the
problem that some pipeline stages consume much more energy
than others is reduced. Potentially, this can also help to avoid
hotspots, which can slow down transistor aging. However,
since the purpose is to minimize the overall power consump-
tion, the timing slack for each pipeline stage is minimized
after applying cycle-time borrowing to the pipeline. This
slack reduction can negatively affect MTTF. In contrast, our
technique tries to increase the timing slack of some stages, to
improve their MTTF and so the MTTF of the entire processor.

III. Motivation and Main Idea

As mentioned in Section II, BTI and HCI can significantly
increase pipeline stage delays during runtime. To illustrate this
circumstance and motivate our work, we used FabScalar, an
out-of-order, 11-stage, superscalar processor [12] as well as the
OpenSPARC T1 processor, which has an in-order, six-stage
pipeline that features four-way simultaneous multithreading
(SMT) [1]. Both processors were synthesized with Synopsys
Design Compiler using the TSCM 65 nm library. For the
evaluation, we used the framework detailed in Sections V and
VI and a timing guardband of 10 %.

To investigate the aging rates of different pipeline stages,
we extracted the delay at design time and after three years
(= ttarget) for each stage using the flow described later in
Section V. The results of this analysis, illustrated in Fig. 1,
clearly show that different pipeline stages have different
wearout rates. While the delay of FabScalar’s execution stage
increases by almost 10 % within three years, the delay of the
retire stage increases by less than 1 %, although their delays
at design time were similar (≈ 1.35 ns). Similar results are
obtained for OpenSPARC as shown in Fig. 1(b). Also, the
imbalance in terms of MTTF (given a timing slack of 10 %)
can be huge. Between the execution stage of FabScalar, which
starts to fail first, and the retire stage, there is a factor of more
than 20x difference. This means that one pipeline stage already
produces timing failures, while other stages are still running

OBORIL AND TAHOORI: AGING-AWARE DESIGN OF MICROPROCESSOR INSTRUCTION PIPELINES 707

Fig. 1. Delay at design time and after three years (normalized to worst case design time delay) and MTTF for different pipeline stages for two microprocessors
(dotted line is the minimum clock period). (a) FabScalar. (b) OpenSPARC T1.

Fig. 2. Illustration of wearout affecting parameters (temperature, duty cycle) for the FabScalar microprocessor extracted with the toolset given in Section VI.
(a) Simplified temperature distribution for the FabScalar microprocessor running the 181.mcf benchmark. (b) Distribution of duty cycles for all signals within
the 100 most critical paths after three years for FabScalar’s Fetch2 and Retire stage (higher duty cycle means faster wearout) for the 181.mcf benchmark.

correctly. Hence, the latter are overdesigned. Furthermore, we
observed that the critical stage changes over runtime. For
both processors it is the execution stage which is critical after
three years. However, at the beginning it is the load-store-unit
(LSU) and the writeback stage for FabScalar and OpenSPARC,
respectively.

Note that for other microprocessor designs or other tech-
nology libraries, Fig. 1 might look different, i.e., other stages
age faster, have different MTTF values, and so on. However,
the overall observation of delay and MTTF imbalance after a
certain runtime remains valid (e.g., in [14] similar results are
reported for the IVM microprocessor), as also shown by the
two complementary processors chosen for this paper.

The tremendous differences in terms of MTTF and delay
degradation are due to the fact that the parameters influencing
aging, i.e., temperature and usage (duty cycle, switching
activity) are different for different pipeline stages as shown

in Table I. This circumstance is also illustrated in Fig. 2 for
the FabScalar microprocessor and is also reported by various
papers such as [14] and [43]. As shown in Fig. 2(b), the reason
for the faster degradation of the Fetch2 stage is not only its
higher temperature compared to many other stages [Fig. 2(a)],
e.g., the Retire stage, but also the high duty cycle for many
signals in the most critical paths. Considering the 100 most
critical paths after three years, the average duty cycle in these
paths is roughly 0.5, while it is around 0.4 for the Retire
stage. The difference in duty cycle of the critical paths and
temperature is caused by three major factors: 1) the gate-level
implementation; 2) the microarchitecture design; and 3) the
workload (i.e., input patterns) that is currently executed by
each stage [30]. Moreover, the degradation rate of a pipeline
stage strongly depends on the amount of stress on the timing
critical paths, while the behavior of all other paths is almost
negligible. However, since the aging rate depends on so many

708 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 5, MAY 2014

Fig. 3. Abstracted graphic to illustrate the effect of using an MTTF-balanced design on MTTF and performance. Left (Delay-Balanced): at tdesign stage S1
has less delay than stage S0, but ages faster ⇒ For clock period = d′ the lifetime = t′target. Right (MTTF-Balanced): S1 is accelerated ⇒ After ttarget stages
S0 and S1 have same delay (d′) ⇒ longer MTTF possible (ttarget instead of t′target) Alternatively: For same MTTF (t′target) a smaller clock period is possible
(d∗ instead of d′).

interrelated factors, it is a necessity to run detailed circuit-level
simulations to obtain accurate results.

A. Main Idea

Since MTTF of the microprocessor is determined by the
smallest MTTF of all pipeline stages, and the clock frequency
is mandated by the slowest stage after the target lifetime ttarget,
it is obvious that the described imbalance leads to a sub-
optimal design. Looking at the criticality of different pipeline
stages at ttarget, there are two possible optimization strategies.

1) First, stages that are faster (i.e., have more slack) than
the critical stage after ttarget can be designed slower (i.e.,
with less slack), by applying appropriate gate-sizing
techniques, using a higher threshold voltage, and so on,
leading to extra energy and area savings [13], [20].

2) Second, if a stage S1 degrades faster than the design-
time-critical stage S0, it can be designed faster (i.e., with
more slack). This can be used in two different ways,
both shown in Fig. 3, where the dotted line represents
the slow-aging, design-time-critical stage and the solid
line, the fast-aging stage. First, the clock frequency (i.e.,
clock period) can be kept constant, so that a higher
MTTF can be achieved (which means that ttarget can be
increased). In Fig. 3, this means that the clock period
remains at d ′ and the target lifetime increases to ttarget. In
the second case, MTTF is kept constant (i.e., equal to
t′target), so that the clock period can . be reduced (i.e.,
less guardband and hence higher frequency, meaning
higher performance). Using the annotations from Fig. 3,
it means that the new clock period is d∗ < d ′.
Depending on whether the first or second case is chosen
as the optimization target, the design should be balanced
either at ttarget or t′target, respectively. In this paper, we
have chosen the first case as explained in Section VI.

Hence, in summary, slow-aging stages should be designed
with less slack (i.e., slower) to save area and energy, while
the timing slack for fast-aging stages should be increased (i.e.,
speed-up), to improve their MTTF and in turn the MTTF of the
entire microprocessor or the overall performance (i.e., clock
frequency). Thereby. the key design aspect is that the pipeline

stage delays should be balanced after the target lifetime
and not at design time. Since this is not achievable using
the traditional delay-balanced design approach, we propose
a new MTTF-balanced pipeline design. We will explain this
paradigm in detail in the following section.

IV. Aging-Aware Pipeline Design

The key idea of the MTTF-balanced pipeline design is that
the pipeline stage delays are balanced after the desired lifetime
ttarget (t′target) rather than at design time tdesign. Hence, also
MTTFs of all stages are equal to ttarget (t′target). In the following
we will explain the flow to generate an MTTF-balanced
pipeline. Thereby, for the matter of simplicity we will only
refer to the targeted lifetime ttarget.

A. Generation of MTTF-Balanced Pipeline Design

The transformation flow, detailed in Fig. 4, is a multipurpose
flow that can be used for various optimization targets such
as getting the best MTTF while maintaining a given clock
frequency or extracting a design that is as fast as possible for
a given target lifetime ttarget. The last case will be explained
in detail now.

The starting point of the transformation process is a delay-
balanced design, as it is used nowadays (Step 1). Next, the
delay, d∗, after the given target lifetime ttarget of the critical
stage at design time is extracted using the flow presented later
in Section V (Step 2). Since this stage cannot be designed any
faster (otherwise it would not be critical at design time), the
clock period of the final MTTF-balanced pipeline cannot be
smaller than this delay. Since the final design should be as fast
as possible, d∗ will work as a reference for the clock period.

The next step (Step 3) is to extract the delay di of each
pipeline stage after ttarget and to compare it with d∗. If the
delay is smaller than d∗ (i.e. the stage is faster than necessary),
a new, slower version of this pipeline stage will be generated.
Therefore, we adjust the timing constraints for this pipeline
stage and resynthesize it. As the synthesis tool supports
gate-sizing, path reorganization and time borrowing all these
techniques will be applied in parallel to optimize for delay,

OBORIL AND TAHOORI: AGING-AWARE DESIGN OF MICROPROCESSOR INSTRUCTION PIPELINES 709

Fig. 4. Algorithm to transform a delay-balanced design into an MTTF-
balanced design.

power and area efficiency. In addition also a higher threshold
voltage can be used [13], [20]. However, as a result it is
possible that different pipeline stage designs result in the same
MTTF. In Section IV-B, we will explain how such scenarios
are handled. In case resynthesis is not feasible, it is also
possible to modify only small sub-circuits or gates [11].

If the delay di is greater than d∗ (i.e., stage is slower than
necessary), a new, faster version (using gate sizing, and so
on) will be generated. If this is not possible, the final design
has to use a clock frequency of at least di. Hence, d∗ will be
increased and set to di. In that case Step 3 has to be restarted.

After all pipeline stages are analyzed and eventually mod-
ified, their new delay information is extracted (Step 4). Here
it is extremely important to investigate all stages in one step
and not only those that have been changed in Step 3. This
is due to the fact that as long as one stage is modified, the
power consumption and hence the temperature distribution
will change, which can affect also the wearout and hence the
delay of other stages. If it is detected in Step 4 that a stage,
which was previously faster than necessary, is now slower
than necessary, the changes leading to this situation will be
reverted and the previous implementation will be used. Since
these situations are undesired, the delay differences between
the new and the old implementation should be very small (see
Section IV-C for more details).

Fig. 5. Pipeline stage modification (faster/slower) required to generate an
MTTF-balanced design.

If there is at least one modified stage remaining after Step 4,
again Step 3 followed by Step 4 will be executed until no
pipeline stage is modified anymore, i.e., until no stage can
be tuned further. When this saturation state is reached, the
transformation to the MTTF-balanced design is finished.

Note that in some application areas it might be more
important to minimize the die area or energy consumption,
instead of performance (clock frequency). In that case, the
transformation procedure is very similar to the one explained
before. The only difference is that d ′ is used as reference delay
in place of d∗. Hence, no stage will be accelerated. Instead all
stages, beside the one that is critical at ttarget, will be designed
slower, hence with less energy and area consumption.

The flow can also accept a given clock target instead of
a lifetime target to find the MTTF-balanced design with the
best MTTF. In this case d∗ is replaced with d̃ and ttarget is
set according to the lifetime of the design-time critical stage
given the delay target d̃. If during the optimization phase a
pipeline stage cannot satisfy the given clock target (slower
than necessary), ttarget will be reduced to the lifetime of this
stage (instead of adjusting d∗ as shown in Step 3) and the
transformation process is restarted (Step 3).

B. Modification (Faster/Slower) of Pipeline Stage

A crucial part of the previously presented transformation
flow is the modification of a pipeline stage, i.e., the step to
generate a faster or slower version of a pipeline stage. As
already mentioned, we use the synthesis tool for this purpose.
Therefore, the timing constraints are tightened or relaxed (e.g.,
by 1 %) and then the pipeline stage is resynthesized using the
new timing constraints, while all other constraints are kept
the same. To match the new timing constraints the synthesis
tool applies gate-sizing (smaller gates for relaxed constraints,
larger gates for tighter constraints), path reorganization as well
as time borrowing techniques, and also the transistor threshold
voltage can be tuned (lower Vth for relaxed constraints, higher
Vth for tighter constraints) as illustrated in Fig. 5. Hence, there
are many different ways to obtain an optimized design, e.g.,
with and without Vth-tuning. As a consequence, it is possible

710 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 5, MAY 2014

Fig. 6. Simple and enhanced transformation flow for a single pipeline stage (that can have weaker timing constraints) from delay-balanced to MTTF-balanced.
(a) Simple transformation using a fixed step width. (b) Enhanced transformation using non-uniform steps.

that there are several different designs for the same pipeline
stage that have different delays at tdesign but the same MTTF.
For example the Fetch1 stage of FabScalar can achieve a
lifetime of seven years in two different ways: 1) using the
nominal Vth and a fresh delay of 1.38 ns, and 2) with a higher
Vth and a fresh delay of 1.40 ns (see Section VI for more
details). In such scenarios, it is of course the question, which
design should be chosen for the final microprocessor. There-
fore, to select one final design, the other design parameters
such as area and energy consumption are used and for example
the design with the best energy consumption can be chosen.
This way, lifetime, energy consumption and area can be co-
optimized. However, generating more versions of the same
pipeline stage increases the transformation time. Hence, the
number of generated versions also depends on the time budget
of the manufacturer or designer.

C. Runtime Improvements

The runtime for the transformation process from a delay-
balanced to an MTTF-balanced pipeline is proportional to the
number of necessary iterations, i.e. the number of synthesis
steps and delay/MTTF estimation steps. Hence, to reduce
runtime, the number of iterations has to be reduced.

In our preliminary work [37], we used a fixed resolution of
0.01 ns for each iteration with which the delay constraints were
tightened or relaxed, as shown in Fig. 6(a). However, such a
uniform step width can lead to a huge number of iterations
until the final MTTF-balanced implementation is found. For
example, the delay constraint for FabScalar’s retire stage could
be relaxed by a total of 0.1 ns, which corresponds to at least
ten iterations considering all pipeline stages.

To improve the runtime of the transformation process, we
propose to use a non-uniform resolution as shown in Fig. 6. We
observed that tighter or weaker timing constraints have only
a weak effect on the delay degradation itself. For example, if
the delay degradation of a pipeline stage is roughly 9 % after
three years, the gate-level modification to have a faster/slower
version of this stage do not affect this value very much. This
is reasonable, since gate-sizing or reorganization of just a
few paths does not affect the majority of the internal signals
and hence the aging rate is not significantly affected [15].
Hence, the aging rate of the original, delay-balanced version

of a pipeline stage can be used to estimate its design time
delay (i.e., timing constraints) for the MTTF-balanced version,
according to the following equation:

dnew
fresh = dclk · (1 +

d
orig

aged

d
orig

fresh

)−1 =
dclk

wearout rate
(3)

where dclk is the targeted clock period, dnew
fresh and d

orig

fresh are the
design time delays of the modified and delay-balanced pipeline
stage, respectively, and d

orig

aged is the aged delay (here, after three
years) of the delay-balanced version. Using this estimation,
the timing constraints for resynthesis are set and the design is
optimized accordingly. Then, it is evaluated whether the new
design matches the MTTF-balanced criteria or not. In the latter
case, the design is tuned further using a fixed step size. By
this means, it is possible to significantly reduce the number
of iterations. For example, in case of FabScalar the number of
iterations is reduced from ten to three, which corresponds to
a three times more runtime improvement.

Besides the number of iterations also the runtime of a single
iteration step is crucial for the overall runtime. To keep this as
low as possible, the pipeline stages are not fully synthesized
every time an optimization step is performed. Instead, an
intermediate representation of the last version is stored in form
of a ddc-file (Synopsys database format), which is then used
for further optimizations. As the ddc-file contains already the
gate-level design with all optimizations to match the current
timing constraints, the initial synthesis from a behavioral to
a gate-level description as well as basic optimization are
avoided, which improves runtime furthermore. Overall these
optimizations can reduce the runtime of a single iteration step
to less than 1 min for a single pipeline stage, if the runtime
for post-synthesis simulations is not considered. Hence, the
runtime for one iteration is less than 10 min for the entire
FabScalar processor considering all 11 pipeline stages and
even less than 5 min for OpenSPARC, as OpenSPARC has
just six pipeline stages. As a result, the overall runtime for
the transformation flow is dominated by the post-synthesis
simulations, which are part of the aging estimation step.

OBORIL AND TAHOORI: AGING-AWARE DESIGN OF MICROPROCESSOR INSTRUCTION PIPELINES 711

Fig. 7. Flow for extracting MTTF for each pipeline stage.

V. MTTF-Estimation Flow

To accurately evaluate the aging rates (delay changes) and
MTTF values for each pipeline stage, a suitable analysis flow
is necessary. In this section a generic flow is described, which
is based on standard industrial design tools (see Table II).

As shown in the Section II, the aging rate of a transistor
strongly depends on its duty cycle, switching activity and
temperature. Hence, it is very important to accurately calculate
these values. Therefore, the first step of the estimation flow,
depicted in Fig. 7, is to generate a gate-level description
(netlist) of the pipeline stage under investigation. Afterward,
gate-level simulations are performed to obtain the properties of
all internal signals for the evaluated stage. This data is used to
extract first the energy consumption and then the temperature
behavior of this stage. Since two neighboring stages affect
the temperature behavior of each other, the entire processor
has to be considered during the last step. The next step is
to extract the delay degradation for the evaluated pipeline
stage. Therefore, the temperature information and the signal
behaviors (duty cycles, switching activities) are given to an
in-house aging estimation tool. This tool accurately calculates
the delay degradation for each gate based on gate-level models
similar to the ones presented in [23]. Therefore, for each
gate the duty cycle and switching activity for each transistor
inside this gate is obtained considering the stacking effect [47].
Later, the threshold voltage shift for each transistor using
the transistor-level aging models described in Section II is
estimated. By that means the delay degradation for each gate
can be obtained. With the help of a standard delay format
(SDF) file containing the design time delay information for
all gates, an “aged” SDF file is generated that is based on
the degraded gate delays. Finally, this “aged” SDF is read by
the synthesis tool, the design is annotated accordingly and a
new timing report is extracted which contains the most critical
paths of the aged design. Together with the information about

TABLE II

Tools used for Result Extraction

Synthesis + Timing Estimation Synopsys Design Compiler D-2010.03-SP4
Simulation + SAIF-Generation Cadence NC Sim 12.10-s005

Power Extraction Synopsys PrimeTime D-2010.03-SP4
Temperature Extraction HotSpot 5.02 [19]

Aging Analysis Inhouse C++-Tool

the most critical path at design time and the given clock period
the aging rate as well as MTTF for the entire stage can be
extracted.

A. Runtime Improvements

Compared to our preliminary flow presented in [37], this
new flow is enhanced to provide a better accuracy (all paths
are considered instead of only the top most critical ones), a
shorter runtime (minutes instead of days) and to require less
computing resources.

Due to the low runtime for the aging estimation step itself,
the overall runtime for the aging estimation flow is dominated
by the time required to perform post-synthesis simulations
for a sufficiently large number of clock cycles, which can
take up to several hours for very complex pipeline stages.
In this section, we will discuss two possibilities to eliminate
these costly simulations and how the accuracy of the aging
estimation is impacted using these techniques.

Since the post-synthesis simulations are performed to ex-
tract the (average) signal properties over a long period of time,
the first approach is to use a default annotation (e.g., duty
cycle = 0.5, switching activity = 0.01) for all primary inputs
of the pipeline stage under investigation and to propagate
these information through the remaining design to get the
signal properties for all internal signals. In contrast, the second
technique uses the real signal properties for all primary inputs,
outputs and flipflops (extracted during higher-level simulation
steps) and propagates these information through the remaining
design. In both ways, the costly post-synthesis simulations can
be avoided and the synthesis tool can be used to perform the
signal property propagation to extract the signal behaviors
for the entire design. However, the cost for the speedup
(several orders of magnitude: seconds versus minutes or hours)
are inaccurate signal properties compared to post-synthesis
simulations as the signal property propagation is never 100 %
accurate [25]. As a result, the aging estimation using these
two techniques will be inaccurate. In fact, as shown in Fig. 8
the inaccuracy for the first approach can reach almost 6 %
in case of the FabScalar microprocessor which corresponds
to an inaccuracy of more than ten times in terms of MTTF.
In contrast, the second approach is much more accurate (less
than 1 % deviation), which is due to the fact, that real data
is used to annotate the design. Therefore, this approach can
be chosen whenever some small inaccuracy is acceptable or
post-synthesis simulations are not feasible.

Note that the high-level simulations that are necessary for
the second technique are always performed during the typical
design-flow and hence do not need to be conducted addition-
ally. For example during the design of the microarchitecture

712 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 5, MAY 2014

Fig. 8. Inaccuracy (min, avg, max for six SPEC2000 benchmarks) in terms
of aging rate of the default annotation (δ = 0.5, α = 0.01) and a presynthesis
simulation compared to comprehensive post-synthesis simulations for the
FabScalar microprocessor.

TABLE III

Architecture comparison of FabScalar and OpenSPARC T1

FabScalar [12] OpenSPARC T1 [1]
Frequency 740 Mhz 1140 Mhz

Architecture out-of-order in-order
Pipeline Stages 11 6

Simultaneaous Multithreading no 4-way
Frontend-Width (per Thread) 4 insts/cycle 1 inst/cycle

Exec. Units (ALU/MUL/AGEN) 1/1/1 1/1/1

or the verification such simulations are performed. Hence, no
additional runtime is required, only the necessary data needs
to be stored for the future.

VI. Experimental Results

In this section a comparison using the FabScalar micropro-
cessor [12] and OpenSPARC T1 [1] between the proposed
MTTF-balanced designs paradigm and the classical delay-
balanced one is presented. Using these two microprocessors,
we can confirm that the proposed approach is applicable to a
wide range of microprocessor designs, as these are represen-
tatives of complementary microprocessor families as shown in
Table III. The MTTF-balanced designs were generated using
the flow presented in Section IV and the TSMC 65 nm library.
To have a fair comparison in terms of energy and area, we used
the optimization target to get the best MTTF for a given clock
frequency, which is used by both the MTTF-balanced and
the delay-balanced design. Thereby, the clock period is given
by the longest of all pipeline stage delays plus an additional
safety margin of 10 % to avoid timing failures due to aging.
The ambient processor temperature was set to 40 ◦C resulting
in processor temperatures between 50 ◦C and 75 ◦C, which is
reasonable for modern processors. Since the application choice
for the aging estimation step is crucial as shown in Fig. 9, we
evaluated in all our experiments for FabScalar six different
SPEC2000 benchmarks (bzip, gap, gzip, mcf, parser, and

Fig. 9. Aging rates (i.e., delay after three years over design time delay) of
different pipeline stages of the FabScalar microprocessor for six SPEC2000
benchmarks (min, max, avg).

vortex) provided with FabScalar and simulated the processor
behavior for 106 cycles after a warmup. For OpenSPARC
T1 we used the regression test suite that comes with the
simulation environment. Table IV summarizes the main results
for FabScalar and Table V the ones for OpenSPARC. In these
tables, as well as in the rest of this section, for the sake of
simplicity, we present just the worst-case delays and MTTFs
for the different application tests as well as the average energy
consumption over the used benchmarks.

A. Optimization for FabScalar

The minimum clock period for FabScalar was 1.35 ns (equal
to a maximum clock frequency of 740 MHz), limited by the
LSU, which is the most complex unit of this microprocessor.
Hence, given a margin of 10 %, the clock target was 1.48 ns.
For these settings the standard delay-balanced design will fail
after three years as depicted in Fig. 10. After seven years, the
overall degradation reaches already 12.5 %, and after ten years
the delay increase is around 14 %. In contrast, our proposed
MTTF-balanced approach is able to achieve a MTTF of seven
years (2.3 times improvement). Therefore, the Fetch2 and
Execute stage were designed faster (with less design time de-
lay) using the synthesis optimization detailed in Section IV-B.
All other stages were designed with less slack (i.e., slower).
Therefore, a higher threshold voltage (20 % increase in Vth)
in addition to the synthesis optimization techniques could
be applied to all stages apart from the Issue stage, which
could not match the timing constraints if high-Vth transistors
were used in the (near-)critical paths. By this means, the
average energy consumption over all benchmarks (extracted
with Synopsys PrimeTime) of the MTTF-balanced design is
10 % lower than that of the traditional delay-balanced pipeline
for a clock period of 1.48 ns. Furthermore, a higher Vth also
reduces the wearout rates, which can be used to achieve even
higher energy savings. In addition, the area is reduced by 2 %
if the MTTF-balanced version is employed.

If the threshold voltage is not increased, the savings are
much smaller, i.e., 1 % and 2 % for energy and area, respec-

OBORIL AND TAHOORI: AGING-AWARE DESIGN OF MICROPROCESSOR INSTRUCTION PIPELINES 713

TABLE IV

Comparison of a delay-balanced and MTTF-balanced design for the FabScalar microprocessor in terms of design time delay,

worst case MTTF, avg. energy consumption (without SRAM) and area (without SRAM) considering all benchmarks (GS = gate

sizing, HVT = higher threshold voltage in the critical path)

Delay-Balanced
MTTF-Balanced

Nominal Vth Vth-Tuning

Stage
delay MTTF Energy Area delay MTTF Energy Area delay MTTF Energy Area

Changes
@tdesign @t3y (1.48 ns) @tdesign @t3y (1.48 ns) @tdesign @t3y (1.48 ns)

[ns] [ns] [years] [μJ] [μm2] [ns] [ns] [years] [μJ] [μm2] [ns] [ns] [years] [μJ] [μm2]
Fetch1 1.35 1.39 45 12.2 23262 1.38 1.46 7 12.0 25338 1.40 1.46 7 7.3 22459 GS, HVT
Fetch2 1.35 1.48 3 16.6 35030 1.33 1.44 7 16.8 36482 1.33 1.44 7 16.8 36482 GS
Decode 1.34 1.43 16 6.1 24568 1.36 1.45 7 6.1 16697 1.42 1.46 7 2.8 17000 GS, HVT
Rename 1.33 1.38 50+ 1.3 4049 1.33 1.38 50+ 1.3 4049 1.43 1.46 7 0.7 3475 GS, HVT
Dispatch 1.32 1.37 20 0.1 1867 1.32 1.37 20 0.1 1867 1.41 1.46 7 0.1 1861 GS, HVT

Issue 1.35 1.43 18 14.3 30719 1.38 1.44 7 13.4 29157 1.38 1.44 7 13.4 29157 GS
RegRead 1.33 1.36 50+ 2.1 12061 1.33 1.36 50+ 2.1 12061 1.43 1.46 7 1.5 12074 GS, HVT
Execute 1.35 1.48 3 6.4 27529 1.33 1.45 7 6.5 28959 1.33 1.45 7 6.5 28959 GS

LSU 1.35 1.45 7 50.6 107664 1.35 1.45 7 50.6 107664 1.35 1.45 7 50.6 107664 none
WriteBack 1.32 1.36 30 4.0 3193 1.32 1.36 30 4.0 3193 1.43 1.46 7 2.5 3174 GS, HVT

Retire 1.35 1.36 50+ 1.6 3201 1.36 1.37 50+ 1.5 2579 1.45 1.46 7 1.0 2562 GS, HVT
Overall 1.35 1.48 3 115.4 273133 1.38 1.46 7 114.5 268406 1.45 1.46 7 103.4 268746

+2 % -2 % +233 % -1 % -2 % +7 % -2 % +233 % -10 % -2 %

Fig. 10. Delay degradation of the delay-balanced design and MTTF-balanced design for the FabScalar microprocessor. (a) Delay-balanced design. (b)
MTTF-balanced design.

tively. This is mainly due to the fact that some of the pipeline
stages cannot be designed any slower without using a higher
Vth. The reason is the academic nature of FabScalar due to
which the original design is not efficiently balanced.

Note that the energy and area savings are not just positive
side-effects, but are due to the optimization process. As most
pipeline stages are not aging-critical, energy consumption and
area usage can be reduced for the majority of the pipeline
stages resulting in overall energy and area savings.

If an increased MTTF is of secondary interest, it is possible
to reduce the clock period of the MTTF-balanced design
from 1.48 ns to 1.46 ns. Still the MTTF-balanced design has a
lifetime of three years, but the performance compared to the
delay-balanced design will increase by more 2 %. In addition,
energy and area consumption will also be lower as compared
to the delay-balanced version.

An interesting observation of our results is that the Fetch2
(predecode) and the Execute stage have a very similar aging
behavior, although their (microarchitecture-level) functionali-
ties are totally different. The reason is that the delay degra-

dation of both stages is very sensitive to number of stall
cycles that appear during the application execution (the higher
the stall ratio, the faster these stages wear out), while other
stages are less affected by these cycles. This can be explained
in the following way. During stall cycles the pipeline stage
inputs remain constant, which means that also all internal
signals are constant for a longer period of time. If many
transistors inside the critical paths are under stress during these
cycles, the delay degradation is accelerated. The worst results
(degradation of almost 10 % in three years) were observed for
the mcf benchmark, which had a stall ratio of 70 % for the
pipeline front- and backend, while others, such as the parser
benchmark, just had a stall ration of 10 % and caused a much
reduced delay degradation (less than 7.5 %). In contrast, a
correlation between wearout rates and instructions per cycle
(IPC) could not be observed.

B. Optimization for OpenSPARC T1

OpenSPARC T1 is the open source clone of the industrial
UltraSPARC T1 (Niagara) processor developed by Sun and

714 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 5, MAY 2014

TABLE V

Comparison of a delay-balanced and MTTF-balanced design for the OpenSPARC T1 microprocessor in terms of design time delay,

worst case MTTF, avg. energy consumption (without SRAM) and area (without SRAM) considering all benchmarks (GS = gate

sizing, HVT = higher threshold voltage in the critical path)

Delay-Balanced
MTTF-Balanced

Nominal Vth Vth-Tuning

Stage
delay MTTF Energy Area delay MTTF Energy Area delay MTTF Energy Area

Changes
@tdesign @t3y (0.96 ns) @tdesign @t3y (0.96 ns) @tdesign @t3y (0.96 ns)

[ns] [ns] [years] [μJ] [μm2] [ns] [ns] [years] [μJ] [μm2] [ns] [ns] [years] [μJ] [μm2]
Fetch 0.88 0.96 3 398.8 68547 0.85 0.92 10 399.0 68541 0.85 0.92 10 399.0 68541 GS
Pick 0.87 0.92 20 22.2 4139 0.89 0.94 10 22.0 4138 0.92 0.94 10 9.9 4204 GS, HVT

Decode 0.87 0.90 50+ 7.4 1611 0.91 0.94 10 7.3 1610 0.91 0.94 10 3.3 1655 GS, HVT
Execute 0.88 0.96 3 289.0 56142 0.85 0.92 10 291.1 56353 0.85 0.92 10 291.1 56353 GS

LSU 0.88 0.90 50+ 116.4 18307 0.91 0.93 10 116.3 18300 0.91 0.94 10 34.8 16381 GS, HVT
WriteBack 0.88 0.94 10 246.3 58987 0.88 0.94 10 246.3 58987 0.88 0.94 10 246.3 58987 none

Overall 0.88 0.96 3 1080.1 207733 0.91 0.94 10 1081.9 207929 0.92 0.94 10 984.4 206121
+5 % -2 % +333 % +0 % +0 % +5 % -2 % +333 % -9 % -1 %

Fig. 11. Delay degradation of the delay-balanced design and MTTF-balanced design for the OpenSPARC T1 microprocessor. (a) Delay-balanced design.
(b) MTTF-balanced design.

released in 2005 [24]. Hence, the maximum clock frequency
is much higher than for the academic FabScalar, i.e., we
could operate OpenSPARC at 1140 MHz or a minimum clock
period of 0.88 ns using the TSMC 65 nm library limited by
the WriteBack stage. Furthermore, the original design is much
more balanced in terms of delay than the one for FabScalar.

Using the standard delay-balanced design OpenSPARC can
achieve a lifetime of three years for a timing margin of 10 %,
while for a lifetime of ten years already a guardband of 15 %
is necessary as illustrated in Fig. 11. In contrast, using our
proposed MTTF-balanced design paradigm the MTTF can be
extended from 3 years to 10 years, i.e., MTTF is improved by
more than three times (for 10 % timing margin). Therefore,
the Fetch and Execute stages had to be designed with more
design time slack, while all other stages were designed slower
to save area and energy. However, without tuning the threshold
voltage the savings for the remaining stages only compensate
the energy and area costs due to the faster version of the
Fetch and Execute stage. With a higher threshold voltage the
energy consumption can be reduced by 10 % and area by 1 %.
This is especially obvious for the LSU, where energy can
be reduced by almost four times by using a higher threshold
voltage.

Similar to FabScalar, the clock frequency can be increased
by 2 %, if MTTF is kept the same as for the delay-balanced
design. Hence, also here the gained headroom can be used to
boost the performance.

C. Comparison of FabScalar and OpenSPARC T1

As explained in the previous sections, the lifetime for
both FabScalar and OpenSPARC can be significantly extended
using our proposed MTTF-balanced design paradigm, with
better results for OpenSPARC. However, in general, it cannot
be concluded that our technique is more efficient for simple,
lightweight cores, since the two investigated processors as well
as the used workloads are very different. This is also the reason
why a direct comparison of the aging rates between FabScalar
and OpenSPARC cannot be performed. Nevertheless, a few
conclusions can be drawn by the numbers presented in this
paper. For both architectures, it is the execution stage which
is aging-critical. Moreover, for both designs the delay degra-
dation for the execution stage is very similar. This is due to
the fact that similar ALUs were used, and that the temperature
as well as signal probabilities in the critical paths were in a
similar range. Furthermore, we observed for both designs that
the aging rate of a pipeline stage is not very sensitive to its

OBORIL AND TAHOORI: AGING-AWARE DESIGN OF MICROPROCESSOR INSTRUCTION PIPELINES 715

design time delay. In other words, the aggressiveness with
which a pipeline stage is designed seems to have only a small
effect on its aging rate. In fact, the functionality, the workload
and the temperature are far more important in terms of aging.

VII. Conclusion

Microprocessors at nano-scale are exposed to various re-
liability issues, which include a more rapid aging of all
components. This leads to increasing pipeline stage delays dur-
ing the operational lifetime, resulting in imbalanced designs in
terms of delay and MTTF, if the delays are balanced at design
time. In this paper, we have shown that this imbalance hides
a lot of optimization potential for higher clock frequencies,
longer lifetimes (i.e., higher MTTF) as well as reduced power
and area consumption.

Therefore, we proposed a radically new, aging-aware
MTTF-balanced pipeline design scheme to replace the tra-
ditional delay-balanced paradigm. Using the new approach,
the imbalance during runtime is minimized, allowing better
designs. Our experimental results show that for the FabScalar
microprocessor, the MTTF-balanced design yields a more than
2.3 times longer MTTF, while the same performance (i.e.,
frequency) as for the delay-balanced design can be maintained.
For OpenSPARC T1 the lifetime can even be increased by
more than three times with no negative impacts on perfor-
mance and area. Moreover, for both deigns the average energy
consumption can be reduced by almost 10 %.

References

[1] Oracle. (2013, Jul.). Opencores: OpenSPARC Overview [Online]. Avail-
able: http://www.oracle.com/technetwork/systems/opensparc/index.html

[2] J. Abella, X. Vera, and A. Gonzalez, “Penelope: The NBTI-aware
processor,” in Proc.40th Annu. IEEE/ACM Int. Symp. Microarchitec.,
2007, pp. 85–96.

[3] C. Auth et al., “A 22 nm high performance and low-power CMOS tech-
nology featuring fully-depleted tri-gate transistors, self-aligned contacts
and high density MIM capacitors,” in Proc. Symp. VLSI Technol., 2012,
pp. 131–132.

[4] M. Basoglu, M. Orshansky, and M. Erez, “NBTI-aware DVFS: A
new approach to saving energy and increasing processor lifetime,” in
Proc. 16th ACM/IEEE Int. Symp. Low Power Electron. Design, 2010,
pp. 253–258.

[5] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, et al.,
“High-performance CMOS variability in the 65-nm regime and beyond,”
IBM J. Res. Develop.—Adv. Silicon Technol., vol. 50, pp. 433–449,
Jul. 2006.

[6] D. R. Bild, G. E. Bok, and R. P. Dick, “Minimization of NBTI
performance degradation using internal node control,” in Proc. Conf.
DATE, 2009, pp. 148–153.

[7] S. Borkar, “Designing reliable systems from unreliable components:
The challenges of transistor variability and degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10–16, Nov./Dec. 2005.

[8] A. Bravaix, C. Guerin, V. Huard, D. Roy, J. Roux, and E. Vincent,
“Hot-carrier acceleration factors for low power management in DC-AC
stressed 40 nm NMOS node at high temperature,” in Proc. IEEE IRPS.,
2009, pp. 531–548.

[9] A. Calimera, E. Macii, and M. Poncino, “NBTI-aware power gating for
concurrent leakage and aging optimization,” in Proc. 14th ACM/IEEE
ISPLED, Aug. 2009, pp. 127–132.

[10] T. Chan, J. Sartori, P. Gupta, and R. Kumar, “On the efficacy of NBTI
mitigation techniques,” in Proc. Conf. DATE, 2011, pp. 1–6.

[11] J. Chen, S. Wang, and M. Tehranipoor, “Efficient selection and analysis
of critical-reliability paths and gates,” in Proc. Great Lakes Symp. VLSI,
2012, pp. 45–50.

[12] N. Choudhary, S. Wadhavkar, T. Shah, H. Mayukh, J. Gandhi, B. Dwiel,
et al., “FabScalar: Automating superscalar core design,” IEEE Micro,
vol. 32, no. 3, pp. 48–59, May 2012.

[13] O. Coudert, “Gate sizing for constrained delay/power/area optimization,”
IEEE Trans. Very Large Scale (VLSI) Syst., vol. 5, no. 4, pp. 465–472,
Dec. 1997.

[14] M. DeBole, R. Krishnan, V. Balakrishnan, W. Wang, H. Luo, Y. Wang,
et al., “New-Age: A negative bias temperature instability-estimation
framework for microarchitectural components,” Int. J. Parallel Program.,
vol. 37, no. 4, pp. 417–431, Aug. 2009.

[15] M. Ebrahimi, F. Oboril, and M. B. Tahoori, “Aging-aware logic synthe-
sis,” in Proc. 2013 IEEE/ACM Int. Conf. Comput.-Aided Design, 2013,
pp. 1–8.

[16] F. Firouzi, S. Kiamehr, and M. B. Tahoori, “NBTI mitigation by NOP
assignment and insertion,” in Proc. Conf. DATE, 2012, pp. 218–223.

[17] E. Gunadi, A. A. Sinkar, N. S. Kim, and M. H. Lipasti, “Combating
aging with the colt duty cycle equalizer,” in Proc. 43rd Annu. IEEE/ACM
Int. Symp. Microarchitec., 2010, pp. 103–114.

[18] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach. San Mateo, CA, USA: Morgan Kaufmann, 2011.

[19] W. Huang et al., “HotSpot: A compact thermal modeling methodology
for early-stage VLSI design,” IEEE Trans. Very Large Scale (VLSI) Syst.,
vol. 14, no. 5, pp. 501–513, May 2006.

[20] T. Karnik, Y. Ye, J. Tschanz, L. Wei, S. Burns, V. Govindarajulu, et al.,
“Total power optimization by simultaneous dual-vt allocation and device
sizing in high performance microprocessors,” in Proc. 39th Annu. DAC,
2002, pp. 486–491.

[21] JJ. Keane, T. Kim, X. Wang, and C. H. Kim, “On-chip reliability
monitors for measuring circuit degradation,” Microelectron. Reliab.,
vol. 50, no. 8, pp. 1039–1053, 2010.

[22] O. Khan and S. Kundu, “A self-adaptive system architecture to address
transistor aging,” in Proc. DATE, 2009, pp. 81–86.

[23] S. Kiamehr, F. Firouzi, and M. B. Tahoori, “Input and transistor
reordering for NBTI and HCI reduction in complex CMOS gates,” in
Proc. GLSVLSI, 2012, pp. 201–206.

[24] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-way
multithreaded Sparc processor,” IEEE Micro, vol. 25, no. 2, pp. 21–29,
Mar./Apr. 2005.

[25] B. Krishnamurthy and I. G. Tollis, “Improved techniques for estimating
signal probabilities,” IEEE Trans. Comput., vol. 38, no. 7, pp. 1041–
1045, Jul. 1989.

[26] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “Impact of NBTI on
SRAM read stability and design for reliability,” in Proc. 7th ISQED,
2006, pp. 210–218.

[27] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “NBTI-aware synthesis
of digital circuits,” in Proc. 44th Annu. DAC, 2007, pp. 370–375.

[28] Y. Kunitake, T. Sato, and H. Yasuura, “Signal probability control for re-
lieving NBTI in SRAM cells,” in Proc. 11th ISQED, 2010, pp. 660–666.

[29] X. Liang, G. Wei, and D. Brooks, “ReVIVal: A variation-tolerant
architecture using voltage interpolation and variable latency,” IEEE
Micro, vol. 29, no. 1, pp. 127–138, Jan./Feb. 2009.

[30] E. Mintarno, V. Chandra, D. Pietromonaco, R. Aitken, and R. Dutton,
“Workload dependent NBTI and PBTI analysis for a sub-45nm com-
mercial microprocessor,” in Proc. IEEE IRPS, 2013, pp. 3A.1.1–3A.1.6.

[31] E. Mintarno, J. Skaf, R. Zheng, J. Velamala, Y. Cao, S. Boyd, et al.,
“Self-tuning for maximized lifetime energy-efficiency in the presence
of circuit aging,” IEEE Trans. Computer-Aided Design Int. Circuits
Syst., vol. 30, no. 5, pp. 760–773, May 2011.

[32] S. Mittl, A. Swift, E. Wu, D. Ioannou, F. Chen, G. Massey, et al.,
“Reliability characterization of 32 nm high-K metal gate SOI technology
with embedded DRAM,” in Proc. IEEE IRPS, 2012, pp. 6A.5.1–6A.5.7.

[33] V. Narayanan and Y. Xie, “Reliability concerns in embedded system
designs,” Computer, vol. 39, no. 1, pp. 118–120, 2006.

[34] F. Oboril, F. Firouzi, S. Kiamehr, and M. B. Tahoori, “Negative bias
temperature instability-aware instruction scheduling: A cross-layer
approach,” J. Low Power Electron., vol. 9, no. 4, pp. 389–402,
2013.

[35] F. Oboril and M. B. Tahoori, “ExtraTime: Modeling and analysis of
wearout due to transistor aging at microarchitecture-level,” in Proc.
42nd Annu. IEEE/IFIP Int. Conf. DSN, 2012, pp. 1–12.

[36] F. Oboril and M. B. Tahoori, “Reducing wearout in embedded
processors using proactive fine-grained dynamic runtime adaptation,”
in Proc. 17th IEEE Eur. Test Symp., 2012, pp. 68–73.

[37] F. Oboril and M. B. Tahoori, “MTTF-balanced pipeline design,” in
Proc. Conf. DATE, 2013, pp. 270–275.

[38] F. Oboril and M. B. Tahoori, “ArISE: Aging-aware instruction set
encoding for lifetime improvement,” in Proc. ASPDAC, 2014, pp. 1–6.

716 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 5, MAY 2014

[39] S. Pae, M. Agostinelli, M. Brazier, R. Chau, G. Dewey, T. Ghani, et
al., “BTI reliability of 45 nm high-k + metal-gate process technology,”
in Proc. IEEE IRPS, 2008, pp. 352–357.

[40] B. C. Paul, K. Kang, H. Kufluoglu, M. A. Alam, and K. Roy,
“Temporal performance degradation under NBTI: Estimation and
design for improved reliability of nanoscale circuits,” in Proc. Conf.
DATE, 2006, pp. 780–785.

[41] J. Sartori, B. Ahrens, and R. Kumar, “Power balanced pipelines,” in
Proc. IEEE 18th Int. Symp. HPCA, 2012, pp. 1–12.

[42] T. Siddiqua and S. Gurumurthi, “A Multi-level approach to reduce
the impact of NBTI on processor functional units,” in Proc. GLSVLSI,
2010, pp. 67–72.

[43] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, “Temperature-aware microarchitecture,” SIGARCH
Comput. Architec. News, vol. 31, no. 2, pp. 2–13, May 2003.

[44] E. Takeda, Y. Nakagome, H. Kume, and S. Asai, “New hot-carrier
injection and device degradation in submicron MOSFETs,” IEEE
Proc. I, Solid-State Electron. Devices, vol. 130, no. 3, pp. 144–150,
Jun. 1983.

[45] A. Tiwari, S. R. Sarangi, and J. Torrellas, “ReCycle: Pipeline
adaptation to tolerate process variation,” SIGARCH Comput. Architec.
News, vol. 35, no. 2, pp. 323–334, 2007.

[46] A. Tiwari and J. Torrellas, “Facelift: Hiding and slowing down aging in
multicores,” in Proc. 41st Annu. IEEE/ACM Int. Symp. Microarchitec.,
2008, pp. 129–140.

[47] R. Vattikonda, W. Wang, and Y. Cao, “Modeling and minimization of
PMOS NBTI effect for robust nanometer design,” in Proc. 43rd Annu.
DAC, 2006, pp. 1047–1052.

[48] S. Wang, T. Jin, C. Zheng, and G. Duan, “Low power aging-aware
register file design by duty cycle balancing,” in Proc. DATE, 2012, pp.
546–549.

[49] W. Wang, V. Reddy, A. T. Krishnan, R. Vattikonda, S. Krishnan, and
Y. Cao, “Compact modeling and simulation of circuit reliability for
65-nm CMOS technology,” IEEE Trans. Device Mater. Reliab., vol. 7,
no. 4, pp. 509–517, Dec. 2007.

[50] Y. Wang, X. Chen, W. Wang, V. Balakrishnan, Y. Cao, Y. Xie, et al., “On
the efficiancy of Input Vector Control to mitigate NBTI effects and leak-
age power,” in Proc. Int. Symp. Qual. Electron. Design, 2009, pp. 19–26.

[51] C. C. Wu, D. W. Lin, A. Keshavarzi, C. H. Huang, C. T. Chan, C. H.
Tseng, et al., “High performance 22/20nm FinFET CMOS devices
with advanced high-K/metal gate scheme,” in Proc. IEEE Int. Electron.
Devices Meeting, 2010, pp. 27.1.1–27.1.4.

[52] X. Yang and K. Saluja, “Combating NBTI degradation via gate sizing,”
in Proc. 8th ISQED, 2007, pp. 47–52.

Fabian Oboril received the Diploma degree in
mathematics technology from the Karlsruhe Institute
of Technology (KIT), Karlsruhe, Germany, in 2010.
He is currently pursuing the Ph.D. degree with
the Chair of Dependable Nano-Computing (CDNC)
Group, KIT.

Since 2010, he has been a Research Assistant at the
CDNC Group of Prof. Tahoori at KIT. His current
research interests include the reliability issues of
systems build in the nano era including transistor
aging, fault tolerant computing, and low-power high-

performance microprocessor designs.

Mehdi B. Tahoori received the B.S. degree in
computer engineering from Sharif University of
Technology, Tehran, Iran in 2000, and the M.S.
and Ph.D. degrees in electrical engineering from
Stanford University, Stanford, CA, USA, in 2002
and 2003, respectively.

He is currently a Full Professor and Chair of
Dependable Nano-Computing at the Department of
Computer Science, Institute of Computer Science
and Engineering, Karlsruhe Institute of Technology,
Karlsruhe, Germany. In 2003, he joined the Elec-

trical and Computer Engineering Department at the Northeastern University,
Boston, MA, USA, as an Assistant Professor, and was promoted to the rank
of an Associate Professor with tenure in 2009. During 2002–2003, he was a
Research Scientist at Fujitsu Laboratories of America, Sunnyvale, CA, in
advanced CAD research, focusing on reliability issues in deep-submicron
mixed-signal VLSI designs. In addition to five pending and granted U.S. and
international patents for his work, he has over 140 publications in major
journals and conference proceedings on wide-ranging topics from dependable
computing and emerging nanotechnologies to system biology. His current
research interests include nano computing, reliable computing, VLSI testing,
reconfigurable computing, emerging nanotechnologies, and system biology.

Dr. Tahoori is a recipient of the National Science Foundation Early Faculty
Development (CAREER) Award. He has served as the Program Committee
member as well as workshop, panel and special session organizer of various
conferences and symposia in the areas of VLSI test, reliability, and emerging
nanotechnologies, such as ITC, ICCAD, DATE, ETS, ICCD, ASP-DAC,
GLSVLSI, and VLSI Design. He is also an Associate Editor of ACM Journal
of Emerging Technologies for Computing and Chair of ACM SIGDA Technical
Committee on Test and Reliability.

