
ArISE: Aging-aware Instruction Set Encoding for Lifetime Improvement

Fabian Oboril Mehdi Tahoori
Karlsruhe Institute of Technology (KIT)

Chair of Dependable Nano Computing (CDNC)
Karlsruhe, Germany

e-mails: {Fabian.Oboril,Mehdi.Tahoori}@kit.edu

Abstract—Microprocessors fabricated at nanoscale nodes are
exposed to accelerated transistor aging due to Bias Tempera-
ture Instability and Hot Carrier Injection. As a result, device
delays increase over time reducing the Mean Time To Failure
(MTTF) of the processor. To address this challenge, many (micro)-
architectural techniques target the execution stage of the instruc-
tion pipeline, as this one is typically most critical. However, also
the decoding stages can become aging-critical and limit the mi-
croprocessor lifetime, as we will show in this work. In this paper,
we propose a novel aging-aware instruction set encoding method-
ology (ArISE), that improves the instruction encoding iteratively
using a heuristic algorithm. Our experimental results show that
MTTF of the decoding stages can be improved by 1.93x with neg-
ligible implementation costs.

I. INTRODUCTION

With the continuous downscaling of CMOS technology into
nanoscale dimensions, reliability has emerged as an impor-
tant design constraint besides performance, power and cost [3].
Among various reliability issues, accelerated transistor aging
mainly caused by Bias Temperature Instability (BTI) [17, 22]
and Hot Carrier Injection (HCI) [19] is a major challenge.
Both phenomena manifest themselves in increasing switching
and path delays and eventually cause faster wearout of the sys-
tem. As a result Mean Time To Failure (MTTF) is reduced and
timing violations can occur in the field. To avoid these, de-
signers add safety margins to their designs to ensure a certain
operational lifetime. However, such an overdesign is very ex-
pensive [13]. Hence, new aging-aware design techniques are
necessary to take further advantage of scaled technology nodes
in terms of performance, power, area and reliability.

As the microprocessor lifetime is mainly determined by the
execution units [8], various aging-aware solutions have been
proposed to extend the lifetime of these units. However, many
of these techniques such as aging-aware instruction schedul-
ing [15] or aging-aware NOP instructions [10] are hardly ap-
plicable to other stages of the instruction pipeline. Hence,
by using such techniques and extending the lifetime of exe-
cution stages, the impact of other near-aging-critical stages on
the overall microprocessor lifetime becomes more pronounced.
As a result, MTTF improvements for the entire microprocessor
become much smaller than the individual benefits for the ex-
ecution units. Therefore, additional approaches are necessary
to also improve MTTF of other pipeline stages. In particu-
lar the decoding stages have to be targeted, since these suffer
from high wearout rates and are almost as critical as or even
more critical than the execution stages, as we will show in
this work. However, such approaches to improve lifetime of

pipeline stages in the frontend are still very rare.
To close this gap, we propose a novel aging-aware

instruction set encoding technique1 called ArISE. This tech-
nique exploits the fact that the instruction set encoding (ISE)
has a considerable impact on wearout of the decoding stages,
since it affects the input patterns (via the applied opcodes) and
the gate-level implementation of these stages, which both influ-
ence wearout. To find a good instruction set encoding in terms
of MTTF, our approach uses a hierarchical optimization algo-
rithm based on simulated annealing to obtain an aging-aware
opcode for each instruction in such a way, that the overall life-
time of the decoding stages is improved. Thereby, only the
representing bit patterns are modified, while the opcode length
remains unchanged. Together with existing aging mitigation
techniques for other stages, this approach can help to signifi-
cantly improve the overall microprocessor lifetime.

The results show that the proposed technique can improve
MTTF2 of the decoding stages of the FabScalar microproces-
sor [7] by 1.93x, while other pipeline stages MTTF are not
(negatively) affected. In addition, performance is not impaired
and the area costs are negligible.

In summary, the key contributions of this work are:
• We propose and evaluate an aging-aware ISE to increase

MTTF of the decoding stages.
• We present a generic flow to obtain an aging-aware ISE
The rest of this paper is organized as follows. In Section II

the considered transistor aging phenomena, BTI and HCI, are
introduced followed by a discussion of related work. The novel
ArISE approach is motivated in Section III and the methodol-
ogy to obtain such an encoding is detailed in Section IV. Af-
terwards, we present in Section V our experimental results. Fi-
nally, Section VI concludes the paper.

II. PRELIMINARIES

BTI and HCI impair the threshold voltage of transistors,
which results in longer path delays. This effect is explained
in this section, followed by a discussion of related work.

A. Transistor Aging

A.1 Hot Carrier Injection (HCI)

HCI is a wearout mechanism of NMOS transistors. When
accelerated channel-electrons collide with the gate oxide in-
terface electron-hole pairs are created and free electrons get
trapped inside the oxide layer. As a result, the threshold volt-

1The mapping of instructions (e.g. add) to their binary representation (e.g.
1101), i.e. opcode, is called Instruction Set Encoding.

2In this work MTTF is the time until first timing violation occurs

age Vth increases irreversibly [22]. The magnitude of the Vth-
shift has an exponential relation with temperature [5] and de-
pends also on the number of transitions [19] (i.e. clock fre-
quency, runtime and switching activity), as energetic electrons
are only generated during transitions. To estimate the resulting
Vth-shift, the model from [19] is used.

A.2 Bias Temperature Instability (BTI)

BTI consists of positive and negative BTI, affecting NMOS and
PMOS transistors, respectively [17]. When the gate-source of
a PMOS (NMOS) transistor is negatively (positively) biased,
|Vth| increases due to the creation of traps at the interface be-
tween gate oxide and channel as well as inside the gate oxide
(stress phase). When the gate bias is removed, some of the pre-
viously generated traps are filled, which results in a decreasing
|Vth| (recovery phase). However, the initial shift cannot be en-
tirely compensated leading to a gradual increase of |Vth| over
time. The wearout rate depends on several aspects, such as
temperature and duty cycle, i.e the ratio of stress to total time.
To estimate the overall Vth-shift, the model from [22] is used.

B. Related Work

B.1 Aging Mitigation

To alleviate transistor aging several design techniques have
been already proposed of which we name just a few ones. De-
vice and circuit-level techniques such as gate sizing [24], Vth-
tuning [20], input vector control [23], path balancing [9] and
stacking-based pin reordering [20] are orthogonal to our work
and can be used together with our method.

At (micro)-architecture-level most techniques address tran-
sistor aging for the execution units of a microprocessor, as these
are typically the lifetime-limiting factors [8]. In [15,18] aging-
aware instruction scheduling techniques are evaluated and in
[10] a special NOP-instruction is used to alleviate the impact
of NBTI on an ALU. Also some techniques address wearout in
memories. [14] uses cell-flipping to make duty cycles close to
0.5 and in [21] BTI-induced aging in a register-file is mitigated
by flipping the leading bits of narrow-width values periodically.

In summary, although these (micro)-architecture-level tech-
niques can increase MTTF of memory elements and execution
units considerably, since other stages of the instruction pipeline
do not benefit from these approaches, the lifetime of the entire
microprocessor will be limited. Hence, aging mitigation tech-
niques targeting other stages, particularly the decoding stages,
are necessary. Besides this work, this issue is also targeted
in [11]. The authors proposed to periodically invert the instruc-
tion opcode to make the signal duty cycles close to 0.5, which
should mitigate transistor aging due to BTI. However, HCI is
not addressed and the overall MTTF improvements are much
lower than those of our proposed approach (see Section V).

B.2 Instruction Set Encoding (ISE)

Special ISEs are often applied to reduce the dynamic power
consumption of instruction buffers and registers [1, 6] by min-
imizing the input switching activity. Although we also pro-
pose ISE modifications, our approach is orthogonal to these
techniques, since we target logic circuits instead of memory,
and reliability (lifetime) instead of power. As a consequence,

power can be impacted. For example we observed a 14 %
higher switching activity at the inputs of the instruction buffer
(SRAM-based) for the aging-aware ISE (see Sec. V). This
shows that, although power and wearout are coupled (via tem-
perature), they require different optimization strategies. Hence,
both approaches can be combined to achieve a good trade-off
between power and MTTF.

III. MOTIVATION AND MAIN IDEA

As mentioned earlier pipeline stage delays increase consid-
erably during runtime due to BTI and HCI. Thereby, the input
stream of each stage has a significant influence on the aging
rates, as it affects duty cycle and switching activity of inter-
nal signals. Hence, also the instruction opcodes as part of this
stream contribute to the wearout of the affected stages. To un-
derline this fact and motivate this work, we use the FabScalar3

microprocessor as our case study [7].
To evaluate wearout of different stages for different ISEs,

we extracted the delay at design time and after 3 years for each
stage using the accurate gate-level aging-estimation flow de-
tailed in Section IV.E in combination with the setup given in
Section V and SPEC2000 benchmarks.

The results of this analysis are depicted in Fig. 1. Obvi-
ously ISE has a significant influence on the wearout of fron-
tend stages, especially the decoding stages (Predecode and De-
code). The effect on other stages is in contrast negligible. This
is because the instruction opcode forms only a small part of the
inputs of the other stages (or is no input at all). This differ-
ence in delay degradation rates for the Predecode stage trans-
lates to more than 2x difference in MTTF. Moreover, the results
also show that the decoding stages can even become lifetime-
limiting, if the ISE is not designed aging-aware, as shown in
Fig. 1 (see Encoding 3). This underlines the need for using an
aging-aware instruction encoding.

Improving the ISE is a challenging task, since many instruc-
tion encodings have to be modified to become aging-aware. For
example, in case of the FabScalar microprocessor the instruc-
tion set architecture contains 131 instructions that are encoded
using 8 bits. This means that there are (28)!/(28 − 131)! ≈
10297 encoding possibilities. Since most encodings infer mod-
ifications in the gate-level implementation of the stages and
affect signal duty cycles as well as switching activities, each
encoding requires a new synthesis and simulation flow for ag-
ing analysis. Moreover, instructions cannot be considered in-

0

2

4

6

8

10

Fetch
Predecode

Decode
Rename

Dispatch
Issue

RegRead
Execute

LSU WriteBack

Retire

D
el

ay
C

ha
ng

e
in

%

Encoding 1
Encoding 2
Encoding 3

Fig. 1. Worst-case delay change after 3 years for different pipeline stages for
3 different ISEs (obtained with setup detailed in Section V)

3FabScalar is an out-of-order, 11-stage, superscalar processor

dependently, since duty cycles and switching activities depend
not only on the actual instruction, but also on the preceding
and subsequent instructions. Therefore, to see the effect of a
particular encoding, or even optimizing the encoding for just
one instruction, one has to simulate instruction streams. Due to
this complexity an exhaustive method is infeasible. Hence, we
use a hierarchical heuristic methodology based on simulated
annealing to find an aging-aware ISE as described next.

IV. ARISE: AGING-AWARE INSTRUCTION SET ENCODING

In this section the flow to create an aging-aware ISE con-
sidering the overall MTTF of the decoding stages is explained
(IV.A) and a hierarchical approach to improve its efficiency is
discussed (IV.B). Furthermore, a runtime analysis and further
improvements are presented in part IV.C. The application of
a modified ISE to a real system is described in IV.D and the
aging estimation flow is detailed in Section IV.E.

A. Optimization Algorithm

The starting point of the optimization algorithm, which is
shown in Fig. 2, is a random ISE (here: FabScalar’s standard
ISE). For this ISE all pipeline stages have to be synthesized and
their MTTF values need to be extracted according to the flow
presented in Section IV.E (Steps 1+2). Afterwards, a simulated
annealing (SA) algorithm is invoked (Step 3). As a first step it
generates a “neighbor” ISE for the current one (Step 3.1). For
this new ISE the overall MTTF considering the decoding stages
is estimated (Step 3.2). As neighbor definition we use in this
work the following principal. Two ISEs are neighbors if and
only if a) both ISEs differ only in one instruction opcode (only
possible if there are more binary opcodes than instructions), or
b) the second ISE can be derived from the first one by exchang-
ing the opcodes of two instructions. Using this definition it is
guaranteed that every possible ISE can be evaluated and that
the difference between the new and the old ISE is not that huge
that the optimization process is too random.

The next step is to evaluate if the new ISE will replace the old
one (Step 3.3). Therefore we applied the exponential function
detailed in Equation (1) as cost function:

P (accept ISE) = exp (−(Dnew −Dold)/T)
?
> Preject. (1)

The inputs for the cost function are the worst case delay (which
can be used to represent MTTF) after 3 years for the new and
old ISE. Preject is the reject probability and T the annealing
temperature, which can be iteratively reduced (Step 3.0) ac-
cording to the SA principal. Since SA tries to find the global
optimum, it does not only accept solutions with lower costs (i.e.
better MTTF) but also intermediate solutions with higher costs
to avoid local optima. In both cases a neighbor for the new ISE
is created (Step 3.3.2) and the evaluation continues with this
new neighbor. Otherwise, if the costs for the new ISE are too
high, a new neighbor for the old ISE is generated (Step 3.3.1).

B. Hierarchical Optimization

To improve the efficiency of the optimization process, we
try to minimize the number of steps until an acceptable so-
lution is found. Therefore, we applied the hierarchical opti-
mization approach shown in Fig. 3. First the instructions are

1. Select a starting instruction set encoding (ISE): ISE old
2. Get overall MTTF and worst-case delay after X years

for decode stages (see IV.E): MTTF old & D old
3. While solution is not good enough or number of steps < limit do

3.0. Adjust temperature T
3.1. Generate “neighbor” ISE of ISE old: ISE new
3.2. Get overall MTTF and worst-case delay after X years

for decode stages (see IV.E): MTTF new & D new
3.3. If ISE new is not acceptable according to Equation (1)

3.3.1. then GoTo 3.1.
3.3.2. else ISE old = ISE new

ISE best = ISE old /* memorize best ISE */
GoTo 3.1.

EndIf
End

Fig. 2. Algorithm to generate an aging-aware ISE

classified into different (sub)groups based on their character-
istics, e.g. all ALU-instructions are put into the same group
(Step 1). Afterwards, at each hierarchy-level, the (sub)groups
are ranked according to their aging impact (Step 2). However,
as the aging rate strongly depends on the encoding, the real ag-
ing rates cannot be used for this ranking. As a matter of fact,
instructions affecting the hardware-implementation of the de-
coder have the biggest aging impact. Therefore, the impact on
hardware modifications due to a particular coding scheme is
used to form the ranking. If there are several (sub)groups af-
fecting the hardware-implementation, they are ranked depend-
ing on their occurrence frequency. The next step is to find
the best encoding for each (sub)group, for all hierarchy-levels
starting at the coarsest hierarchy-level (Step 3.1). Thereby, at
each level, the group ranking determines the optimization or-
der. As a result, an exhaustive technique can be applied if there
are only a few (sub)groups at the same hierarchy level with
considerable aging impact. Otherwise, the SA process of Sec-
tion IV.A can be applied for the (sub)groups.

Using this approach, at each hierarchy-level, only the opcode
bits corresponding to that level are modified. For example, if
there are 16 groups at the coarsest level, only the four most sig-
nificant opcode bits are modified (i.e. 16! configurations). As
we used just 16 instruction groups, each of which contained
at most 16 instructions the search space for the entire opti-
mization process became much smaller than the original space
(16!2 ≈ 4 ·1026 vs. 10297), leading to fewer optimization steps.

We compared this approach with the optimization method
described in the previous subsection. To limit the runtime for
the latter, we enforced that one of the modified instructions in
each iteration had to be one of the 10 most frequent instructions

1. Partition instructions into groups and subgroups
/*Instruction groups, subgroups inside groups, */
/*instructions insides subgroups, etc.*/

2. Rank each group (and subgroups subsequently)
2.1 Based on their hardware-impact
2.2 If there are groups/subgroups with same ranking

then use occurrence frequency to rank these
3. For the coarsest down to the finest hierarchy-level do

For the highest ranked group down to the lowest do
3.1 Find the best encoding for the elements within that group

/*Either exhaustive or with simulated annealing*/
3.2 Stop as soon as MTTF is satisfactory

Endfor
Endfor

Fig. 3. Hierarchical approach to obtain an aging-aware ISE

to avoid modifying only the encoding of infrequent instruc-
tions, which have negligible effect on the overall aging rate.
While this version usually finds a feasible ISE within the first
80 to 90 iterations, the hierarchical approach needs usually at
most 30 iterations (i.e. at most 2 hours) to obtain an acceptable
ISE, i.e 3x improvement in runtime.

Please note that this hierarchical approach can be divided
into fewer or more optimization levels, depending on the size of
the instruction set and maximum runtime. Fewer levels allows
to investigate more ISEs and hence could find a better solution
than an approach with more levels. However, more hierarchy
depth results in a much shorter runtime.

Furthermore, please note that also other grouping schemes
can be used for this purpose. In this work, we considered a two-
level categorization and grouped the instructions based on their
type, e.g. all branch, arithmetic, load, store and logic instruc-
tions had their own group, which is also the highest level of the
hierarchy. The next hierarchy-level is the lowest level, i.e. all
instructions inside a group are optimized independently. Other
schemes, for example based on the occurrence frequency, are
also possible and can affect the runtime as well as MTTF.

C. Runtime Analysis and Further Improvements
The runtime for a single simulated annealing step depends

mainly on the time required for synthesizing the decoding
stages, as the time for simulation and aging-estimation can be
reduced to a negligible fraction (see Sec. IV.E). Doing so, a
single step takes in our case less than 4 minutes, which means
that 100 steps can be performed within 6 hours.

In addition, we avoid re-evaluating the same ISE in multi-
ple simulated annealing steps, to reduce the runtime further.
Also, the best solution found during simulated annealing steps
is memorized, such that we can always apply the best ISE in
terms of MTTF that was found and not just the last accepted
one, which may not necessarily be the best one.

D. Applying Modified Instruction Encoding
An ISE modification affects the usability of existing soft-

ware binaries since software compiled for the original ISE can

no longer be executed. To address this issue a software- or a
hardware-based technique can be used.

The software-based solution re-compiles applications using
a compiler based on the modified ISE either on-the-fly (run-
time compilation) or when the application is started for the first
time. In case of application-specific processors re-compilation
is not necessary, since hardware and compiler are typically de-
signed in close interaction and backwards compatibility is sel-
dom required. In general, the advantage of this approach is that
it infers no additional hardware costs and is easy to implement.

The hardware-based approach is intended for processors that
have to be backward compatible to old software, or when re-
compilation is not a feasible solution. Therefore, a mapper is
used, which translates the standard ISE into the aging-aware
ISE during runtime by using a lookup-table or logic-statements
(if-else). This mapping can be done while the instructions are
written to or read from the instruction cache. Our analysis
shows that, the overhead of such a solution is negligible (less
than 0.2 % area overhead for the FabScalar microprocessor).
Besides area overhead this mapper can potentially impact per-
formance, since it could increase the critical path length. How-
ever, in case of FabScalar using a mapper did not negatively
affect the critical path, i.e there was no performance penalty.

E. Aging-Estimation Flow

The flow to calculate the aging rate (MTTF) of a pipeline
stage is based on the one presented in [16]. In this flow, to
accurately estimate the aging rate (MTTF) of a pipeline stage,
the properties (duty cycle, switching activity) for all internal
signals of this stage, its gate-level implementation and temper-
ature behavior are analyzed. Hence, the first step is to generate
a gate-level netlist of this stage. Afterwards gate-level simula-
tions using real-world applications are performed to obtain the
properties of all internal signals for the evaluated stage under
realistic scenarios. This data is used to extract power and then
temperature based on the floorplan and layout. Please note that
since two neighboring stages affect the temperature behavior of
each other, all stages have to be considered during the temper-

Start ISE Processor-HDL

Beh. Simulation

Input Bitstream Netlist

Forward SAIF Backward SAIF

Temperature Analysis

Synthesis + S. Propagation Backward SAIF

Backward SAIF

Aging Analysis

Power Analysis

ISE Generation

Stream Modification

Start ISE Processor-HDL

Temperature Analysis

Aging Analysis

Power Analysis

ISE Generation

Synthesis

Post-Synth. Simulation

detailed flow onlysimple flow onlypower/temperature flowshared between simple/detailed flow

simplified flow detailed flow

Fig. 4. ISE Optimization flows including aging analysis: Left: fast version without post-synthesis simulation, Right: slow and accurate version

Synthesis+Path Extraction Synopsys Design Compiler D-2010.03
Simulation+VCD-Generation Cadence NCSim 12.10 + SPEC2000

Power Extraction Synopsys PrimeTime F-2011.06
Temperature Extraction HotSpot 5.02 [12]

Aging Analysis Inhouse C++-Tool

TABLE I
TOOLS USED FOR RESULT EXTRACTION

ature analysis. Then, the signal properties, temperature infor-
mation and the netlist are used to estimate the Vth-shift of each
transistor using accurate aging models based on [22] for BTI
and [19] for HCI. Afterwards, the delay degradation of each
gate is estimated based on an alpha-power delay model [4]. Fi-
nally, this information is given to the synthesis tool (in form of
a Standard Delay Format, SDF, file) together with the netlist.
The synthesis tool annotates the circuit with the degraded gate
delays and afterwards the aged stage delay is extracted. As
the synthesis tool considers all possible paths during the criti-
cal path extraction process, it is guaranteed that no path is ex-
cluded. Having the delay knowledge the stage’s MTTF can be
calculated. The tools used for these steps are given in Table I.

While the runtime of the aging estimation itself is negligi-
ble, the runtime of the post-synthesis simulations significantly
affects the runtime of the optimization process. For this reason
we propose to replace the post-synthesis simulations during the
optimization phase as shown in Fig. 4. Instead prior to the opti-
mization process a behavioral simulation is performed and the
input-stream for the decoding stages is stored in a file. Then,
during the optimization process, this input-stream is modified
according to the ISE changes, i.e. old opcodes are replaced
with modified ones. The resulting input signal properties are
then given to the synthesis tool (in form of a Switching Activ-
ity Interchange Format, SAIF, file). The synthesis tool propa-
gates these properties through the entire design and calculates
the signal properties for all (internal) signals. By this means ex-
tracting the internal signal properties takes a negligible fraction
of time compared to post-synthesis simulation (a few seconds
vs. ≈ 30 minutes for 106 clock cycles). However, the aging es-
timation accuracy will be impacted, as signal correlations are
not taken into account. Nevertheless, we observed that the in-
accuracy in terms of delta delay is less than 0.5 % and hence
accurate enough to be used in the optimization process.

Please note that for the final results again gate-level simu-
lations are used to extract the signal properties. This way it
is ensured that the presented results are accurate and that the
optimization process was successful.

V. EXPERIMENTAL RESULTS

In this section the impact of an aging-aware ISE on the
FabScalar microprocessor [7] is presented (Section V.A). The
aging-aware ISE was generated using the hierarchical flow pre-
sented in Section IV. For the evaluation we used six SPEC2000
benchmarks (bzip, gap, gzip, mcf, parser, vortex) and simu-
lated 106 cycles after a warmup. Furthermore, in Section V.B
we compare our technique to the inversion method from [11].

A. Evaluation of Aging-aware Instruction Set Encoding

In case of FabScalar, the Predecode stage is more critical
than the Decode stage, which means that first the instructions
with considerable aging impact on the Predecode stage have

Stage
Standard Encoding Best Encoding

Delay [ns] Delay [ns] MTTF Delay [ns] Delay [ns] MTTF
(0y) (3y) [years] (0y) (3y) [years]

Predecode 1.35 1.48 3.0 1.35 1.46 5.8
Decode 1.34 1.43 15.9 1.34 1.42 19.1

Overall 1.35 1.48 3.0 1.35 1.46 5.8
+1.93x

TABLE II
IMPROVEMENTS OF THE BEST ISE IN TERMS OF MTTF AND DELAY

(BOTH WORST-CASE OVER THE USED SPEC2000 BENCHMARKS) FOR THE
EVALUATED PREDECODE AND DECODE STAGE

to be optimized to extend the overall MTTF. As wearout of
the Predecode stage is mainly affected by the branch instruc-
tion group, the best encoding for the corresponding instruction
group was exhaustively determined using 16 iterations. After-
wards 100 simulated annealing iterations were performed to
optimize the encoding for each branch instruction inside the
group. Already after 25 iterations, i.e. after not even 100 min-
utes, the best ISE was obtained for which the delay degrada-
tion within the first 3 years dropped from 9.5 % to 8.1 % for
the Predecode stage and from 6.4 % to 6.1 % for the Decode
stage. Hence, the overall MTTF of the decoding stages can be
improved by 1.93x from 3 years to 5.8 years as shown in Ta-
ble II. This considerable improvement comes from the fact that
the relation between runtime and delay degradation follows a
root-like function. For example, in case of BTI the following
relation can be used to estimate the delay degradation [2]:

∆d(t) ∼ δn · tn, (2)

where, d is the delay, δ the transistor’s duty cycle, t the runtime
and n is a technology constant equal to 0.25. Hence, a delta de-
lay reduction from 9.5 %, to 8.1 % corresponds to a duty cycle,
which is roughly 1.9x smaller than the original one. As a re-
sult, the lifetime improves by 1.9x. Since the behavior for HCI
is very similar, however with n = 0.5, the real results shown in
Table II slightly differ from this estimation.

Please note that the best ISE also improves power and area
of the decoding stages. However, these are just positive side-
effects and are negligible considering the entire processor. Fur-
thermore, the switching activity at the inputs of the instruction
buffer, that stores decoded instructions, increased in average
by 14 %. Hence, depending on the memory technology also
the power consumption of the memory elements can increase.

Stage

Standard Encoding Best Encoding
Delay Power Area Delay Power Area Changes[ns] [mW] [µm2] [ns] [mW] [µm2]

Fetch 1.35 8.18 23262 1.35 8.18 23262 no
Predecode 1.35 11.2 35030 1.35 10.8 33459 yes

Decode 1.34 4.15 23616 1.34 3.60 23625 yes
Rename 1.33 0.91 4050 1.33 0.91 4050 no
Dispatch 1.33 0.12 1867 1.33 0.12 1867 no

Issue 1.35 9.59 30719 1.35 9.59 30719 no
RegRead 1.33 1.44 12061 1.33 1.44 12061 no
Execute 1.35 4.28 27529 1.35 4.06 27341 yes

LSU 1.35 34.1 107664 1.35 34.1 107664 yes
WriteBack 1.34 2.69 3183 1.34 2.69 3183 no

Retire 1.35 1.11 3201 1.35 1.11 3201 no

Overall 1.35 77.71 273133 1.35 76.54 271383
-1.5 % -0.6 %

TABLE III
COMPARISON OF THE FABSCALAR’S STANDARD ISE AND THE BEST

OBTAINED ONE IN TERMS OF DESIGN-TIME DELAY, AVG. POWER (W/O
MEMORY) AND AREA (W/O MEMORY) CONSIDERING ALL BENCHMARKS

Our Technique Periodical Inversion [11]
never always every 103 cyc

∆-Delay @ 3y 8.1 % 9.1 % 9.0 % 9.1 %
MTTF 5.8 years 4.0 years 4.1 years 4 years

TABLE IV
COMPARISON BETWEEN OUR PROPOSED TECHNIQUE AND PERIODICAL
ISE INVERSION [11] IN TERMS OF DELAY DEGRADATION AND MTTF

(NEVER = ISE IS NEVER INVERTED, ALWAYS = ISE IS ALWAYS INVERTED,
EVERY 103 CYC = INVERSION PERIOD =103 CYCLES)

Therefore, if power is another optimization objective our tech-
nique has to be combined with power reduction techniques.

In Table III the effect of ISE modification on the entire mi-
croprocessor is shown. As it can be seen, ISE changes also
result in modifications of the Execution stage as well as Load-
Store-Unit (LSU). However, in terms of delay, wearout or
MTTF these changes are negligible. This is because the in-
struction opcode forms only a small part of the inputs.

B. Aging-aware ISE vs. Periodical Inversion

As mentioned in Section II.B.1, ISE can be periodically in-
verted to reduce BTI-induced wearout [11]. To compare this
approach with our aging-aware ISE, we implemented that tech-
nique in the Predecode stage of FabScalar.

However, the improvements in terms of MTTF are much
smaller than that of our proposed technique as summarized in
Table IV. ISE inversion every 1000 cycles increases MTTF by
just 1 year. Moreover, if ISE is inverted permanently, the im-
provements become even slightly better. Hence, our proposed
technique significantly outperforms the periodic inversion tech-
nique of [11]. This is due to two reasons. First, HCI-induced
wearout is not considered in [11]. Second, the periodical inver-
sion is intended to balance wearout (duty cycles ≈ 0.5). How-
ever, this does not necessarily yield the best MTTF. The reason
is that it is often better to reduce wearout of the most critical
paths as much as possible (duty cycles << 0.5) at the expense
of faster wearout of non-critical paths (duty cycles >> 0.5).
Overall this way a much better MTTF can be achieved.

Please note that the delay degradation with periodical in-
version is not directly comparable with the degradation of the
standard design, as some additional circuitry is necessary to re-
invert the opcode everywhere it is used. Hence, also the overall
circuit wearout is slightly different.

VI. CONCLUSION

Nanoscale microprocessors are exposed to accelerated tran-
sistor aging due to Bias Temperature Instability and Hot Car-
rier Injection. While various techniques exist to mitigate tran-
sistor aging in the execution units, only very few approaches
target the frontend of the instruction pipeline. However, as
we have shown, the decoding stages can become aging-critical
and limit the microprocessor lifetime. To alleviate this prob-
lem we proposed a novel aging-aware instruction set encoding
methodology (ArISE), which increases MTTF of the decoding
stages. The ArISE technique exploits the fact that the instruc-
tion set encoding significantly affects the gate-level implemen-
tation as well as the signal behavior (switching activity, duty
cycle) which all affect aging. To find an aging-aware instruc-
tion set encoding we presented a hierarchical heuristic algo-
rithm that improves the binary instruction opcode with respect

to MTTF. Our experimental results show that ArISE can im-
prove MTTF of the decoding stages of the FabScalar micro-
processor by 1.93x with negligible implementation costs.

VII. ACKNOWLEDGEMENT

This work was partly supported by the German Re-
search Foundation (DFG) as part of the national focal pro-
gram “Dependable Embedded Systems” (SPP-1500, http:
//spp1500.ira.uka.de).

REFERENCES

[1] L. Benini et al., “Reducing Power Consumption of Dedicated Processors
Through Instruction Set Encoding,” in GLSVLSI, Feb. 1998, pp. 8–12.

[2] S. Bhardwaj et al., “Predictive modeling of the nbti effect for reliable
design,” in CICC, Sep. 2006, pp. 189–192.

[3] S. Borkar, “Designing Reliable Systems from Unreliable Components:
The Challenges of Transistor Variability and Degradation,” IEEE Micro,
pp. 10–16, Nov. 2005.

[4] K. A. Bowman et al., “A physical alpha-power law MOSFET model,” in
ISLPED, 1999, pp. 218–222.

[5] A. Bravaix et al., “Hot-Carrier Acceleration Factors for Low Power Man-
agement in DC-AC stressed 40nm NMOS node at High Temperature,” in
IRPS, Apr. 2009, pp. 531–548.

[6] A. Chattopadhyay et al., “Power-efficient Instruction Encoding Op-
timization for Embedded Processors,” in VLSID, Jan. 2007, pp.
595–600.

[7] N. Choudhary et al., “FabScalar: Automating Superscalar Core Design,”
IEEE Micro, pp. 48–59, May 2012.

[8] M. DeBole et al., “New-Age: A Negative Bias Temperature Instability-
Estimation Framework for Microarchitectural Components,” Int’l J. of
Parallel Prog., pp. 417–431, Aug. 2009.

[9] M. Ebrahimi et al., “Aging-aware Logic Synthesis,” in Proc. of the Int’l
Conf. on Computer-Aided Design, Nov. 2013.

[10] F. Firouzi et al., “NBTI Mitigation by NOP Assignment and Insertion,”
in DATE, Mar. 2012, pp. 218–223.

[11] E. Gunadi et al., “Combating Aging with the Colt Duty Cycle Equalizer,”
in MICRO, Dec. 2010, pp. 103–114.

[12] W. Huang et al., “HotSpot: A Compact Thermal Modeling Methodology
for Early-Stage VLSI Design,” IEEE Trans. on VLSI Systems, pp. 501–
513, May 2006.

[13] K. Kang et al., “Estimation of Statistical Variation in Temporal NBTI
Degradation and its Impact on Lifetime Circuit Performance,” in ICCAD,
Nov. 2007, pp. 730–734.

[14] Y. Kunitake et al., “Signal Probability Control for Relieving NBTI in
SRAM Cells,” in ISQED, Mar. 2010, pp. 660–666.

[15] F. Oboril et al., “Reducing NBTI-induced Processor Wearout by
Exploiting the Timing Slack of Instructions,” in CODES+ISSS, Oct.
2012, pp. 443–452.

[16] F. Oboril and M. B. Tahoori, “MTTF-Balanced Pipeline Design,” in
DATE, Mar. 2013, pp. 270–275.

[17] S. Pae et al., “BTI Reliability of 45 nm High-K + Metal-Gate Process
Technology,” in IRPS, May 2008, pp. 352–357.

[18] T. Siddiqua and S. Gurumurthi, “A Multi-Level Approach to Reduce the
Impact of NBTI on Processor Functional Units,” in GLSVLSI, May 2010,
pp. 67–72.

[19] E. Takeda et al., “New hot-carrier injection and device degradation in
submicron MOSFETs,” IEEE Proc. I, Solid-State and Electron Devices,
pp. 144–150, Jun. 1983.

[20] R. Vattikonda et al., “Modeling and Minimization of PMOS NBTI effect
for Robust Nanometer Design,” in DAC, Jun. 2006, pp. 1047–1052.

[21] S. Wang et al., “Low Power Aging-Aware Register File Design by Duty
Cycle Balancing,” in DATE, Mar. 2012, pp. 546–549.

[22] W. Wang et al., “Compact Modeling and Simulation of Circuit Reliability
for 65-nm CMOS Technology,” IEEE Trans. on Device and Materials
Reliability, pp. 509–517, Dec. 2007.

[23] Y. Wang et al., “On the efficiancy of Input Vector Control to mitigate
NBTI effects and leakage power,” in ISQED, Mar. 2009, pp. 19–26.

[24] X. Yang and K. Saluja, “Combating NBTI Degradation via Gate Sizing,”
in ISQED, 2007, pp. 47–52.

http://spp1500.ira.uka.de
http://spp1500.ira.uka.de

	Introduction
	Preliminaries
	Transistor Aging
	Hot Carrier Injection (HCI)
	Bias Temperature Instability (BTI)

	Related Work
	Aging Mitigation
	Instruction Set Encoding (ISE)

	Motivation and Main Idea
	ArISE: Aging-aware Instruction Set Encoding
	Optimization Algorithm
	Hierarchical Optimization
	Runtime Analysis and Further Improvements
	Applying Modified Instruction Encoding
	Aging-Estimation Flow

	Experimental Results
	Evaluation of Aging-aware Instruction Set Encoding
	Aging-aware ISE vs. Periodical Inversion

	Conclusion
	Acknowledgement

