
A-SOFT-AES: Self-Adaptive Software-Implemented

Fault-Tolerance for AES

Fabian Oboril, Ilias Sagar and Mehdi B. Tahoori

Chair of Dependable Nano Computing (CDNC), Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

Email: {fabian.oboril, mehdi.tahoori}@kit.edu, ilias.sagar@student.kit.edu

Abstract—The Advanced Encryption Standard (AES) is one of the most
widespread encryption techniques used by millions of users worldwide.
Although AES was designed to withstand linear or differential attacks,
the security of encrypted messages is not guaranteed. Bit flips occurring
during the encryption due to runtime failures or purposely invoked by
an attacker are a major security concern and can significantly jeopardize
integrity, privacy, and confidentiality and hence the security of the system.
Therefore, techniques to increase the reliability (fault-tolerance) and with
it the security of cryptographic systems are necessary. This work proposes
a self-adaptive software-implemented fault-tolerance methodology for
AES (A-SOFT-AES) to enhance its fault-tolerance. This technique is
based on a pool of software-implemented fault-tolerance techniques out of
which it dynamically chooses the best one in terms of performance, cost,
and fault-tolerance for a wide range of fault rates. Therefore, it provides
superior flexibility over classic hardware-based implementations.

I. INTRODUCTION

The amount of confidential information stored or transmitted elec-

tronically increases rapidly, making the secure storage and commu-

nication between two or more parties indispensable. To guarantee the

security (i.e. confidentiality and integrity ) of the secret information,

cryptographic algorithms are used. These should ensure that nobody

except the intended receiver can read or alter the information. In

this context, AES (Advanced Encryption Standard) [10] is one of the

most widespread encryption algorithms. AES is designed to withstand

linear or differential cryptanalysis attacks [7] and thanks to key

lengths of at least 128 bits it is also secure against brute-force attacks

under current security standards. Hence, from the classical security

perspective, AES is a viable choice.

However, a new class of attacks has emerged to be a severe security

challenge: Fault Attacks. Attackers use power supply glitches, laser

beams or clock perturbations to provoke bit flips in memory elements

during computation and by those means try to recover used keys,

decipher or alter the encrypted information [4], [5], [13], [17]. In

addition also transient runtime failures due to natural phenomena

such as radiation-induced soft errors, power supply noise or crosstalk

can cause unpredictable bit flips during computations [11], [14].

Hence, these transient failures and fault attacks impair the reliability

and security of the cryptographic system. Moreover, since fault

attacks and transient effects result in bit flips, it is impossible to

distinguish between them. A low fault rate can indicate radiation-

induced bit flips as well as fault attacks, as some can break the

system with just one bit flip. On the other hand, a high fault rate

can be due to a harsh environment or a massive attack. As a result,

both mechanisms have to be treated similarly. A naive approach is to

suppress the output and repeat the encoding process, if faults were

detected. However, in many situation this countermeasure leads to a

considerable performance loss and in harsh environments it may even

lead to no output at all. Hence, the cryptographic system has to be

designed fault-tolerant, to ensure a reliable operation as well as the

security of the stored data or transmitted information.

This necessitates the close interaction of security and fault-

tolerance mechanisms to make the cryptographic system resilient

to different types of faults. In addition performance and area costs

should be as low as possible. For this reason we present in this work

a self-adaptive software-implemented fault-tolerance methodology for

an AES-based system: A-SOFT-AES. This generic approach is appli-

cable to different AES implementations and allows to dynamically

choose the best software-implemented fault-tolerance (SWIFT) tech-

nique out of a given set during runtime to maintain high performance

and high fault-tolerance for a wide range of fault rates.

Compared to previous techniques, our SWIFT approach is the first

one that addresses fault-tolerance in a software-implementation of

AES, which is of great importance for millions of users that rely on

software-based AES solutions. Furthermore, only SWIFT allows to

apply an adaptive methodology, since for hardware-implementations

the area overhead and hence costs for adaptive solutions are too high.

Our experimental results show that this approach achieves the best

runtime results in combination with the highest fault-tolerance. It

is the fastest technique for low fault rates and provides the best

fault-tolerance for high fault rates, while the classical non-adaptive

methods are either fast or provide a good fault-tolerance.

In summary, the contributions of this work are:

• A generic, self-adaptive SWIFT methodology for AES.

• A comprehensive performance and fault-tolerance evaluation for

various fault rates and several SWIFT techniques for AES.

The rest of the work is organized as follows. In Section II the

cryptographic system based on AES is introduced. Afterwards, the

related work is discussed in Section III. Our A-SOFT-AES approach

is explained in Section IV, where we also present a set of SWIFT

techniques that are used by A-SOFT-AES. The performance and fault-

tolerance evaluation can be found in Section V. Finally, we conclude

the paper in Section VI.

II. THE AES ALGORITHM

In this section, the Advanced Encryption Standard (AES) is sum-

marized. For brevity only the key aspects are addressed. Please see [7]

for a more comprehensive description.

AES is a block cipher algorithm, which encrypts fixed-length

blocks of 128 bits of plaintext into ciphertext blocks of the same

length. The encrypted blocks are then linked together by using a

mode of operation (e.g. concatenation).

The encryption process for a single text block is depicted in

Figure 1. For this process AES uses keys that are either 128, 192

or 256 bits long, whereupon the usage of longer keys provides a

better security against brute-fore attacks. Depending on the chosen

key-length AES operates between Nr = 10, 12 or 14 rounds on

a single plaintext block to transform it into a cyphertext block, as

depicted in Figure 1. Therefore the encryption process interprets the

text block as a 4x4-array of bytes on which linear and non-linear

operations are applied. The first of these is to expand the key to gain

an encryption key for each round (ExpandKey). Afterwards, a single

104978-1-4799-0664-2/13/$31.00 c©2013 IEEE



Plaintext-Block

AddKey

SubBytes

ShiftRows

MixCols

AddKey

AddKey

Cyphertext-Block

SubBytes

ShiftRows

N
r
−

1
ti

m
es

Key

ExpandKey

Fig. 1. Main substeps of the AES encryption flow

AddKey step is conducted, which adds a key to the plaintext. Then,

Nr−1 rounds containing the four steps SubBytes, ShiftRows,
MixCols and AddKey are executed using the expanded key. In the

last round, only three of the four previously mentioned steps are

performed (MixCols is left out) [7].

While ShiftRows, MixCols (linear diffusion layer) and

AddKey are linear operations, SubBytes is non-linear. Hence,

increasing the fault-tolerance of this operation is much more chal-

lenging than for the other three.

III. RELATED WORK

For encryption algorithms, fault-tolerance against radiation-

induced errors has been identified to be an important issue because

of the confidentiality threat due to fault attacks [1]. In [5] it is

demonstrated that the RSA key can be completely exposed by using

just one erroneous signature. In [3] DES (Data Standard Algorithm)

was successfully attacked by provoking random transient faults

resulting in bit flips in registers. Also a non-fault-tolerant AES cannot

withstand such an attack [9]. In both cases a pair of cyphertexts (a

correct and a faulty one) is used to find out the last round sub-

key. By this mean, other parts of the key can be derived making a

brute-force attack to determine the few unknown bits easy. While

these fault attacks assume that just a single bit in the encryption is

flipped, the attacks presented in [4], [13], [17] make use of several bit

flips. Hence, the encryption algorithms have to have fault-detection

capabilities to detect and resist such attacks.

To address this challenge several hardware-based fault detection

techniques have been proposed, of which we name just a few.

In [12] it is proposed to decrypt the encrypted operation, round

or entire block, and then to compare it with the original entity.

However, this is expensive in terms of performance (if encryption

and decryption are executed in serial) or hardware costs (if both

are executed in parallel). Other approaches favor the usage of parity

codes due to lower costs. In AES, the parity bit is easy to find

for the linear ShiftRows, MixCols and AddKey steps [19] and

also a checksum-based protection covering these three steps can be

efficiently implemented [20]. In contrast, the prediction of the parity

bit is not trivial for the SubBytes step [15]. The techniques [2], [8]

propose several solutions to solve this problem. All these methods

consider the SBox1 as a 256x8 bits memory. In [2] a bit is added to

the 8-bit decoder, which costs area. A cheaper solution is presented

in [8] by taking advantage of the SBox invertibility, which allows to

predict the input and the output parity of the SBox. Detection is done

by comparing actual and predicted parities.

In this paper we use some of the previously proposed hardware-

based concepts for our software-based self-adaptive approach. There-

fore, we abstract the concepts of bit parity checking for SubBytes,

ShiftRows, MixCols and AddKey as well as the checksum
1bijective mapping between input and output byte used by SubBytes

technique of [20] to software-level. In addition, our work uses a fault

model, which handles several bit upsets per block encryption. This

is necessary to account for fault attacks and high natural flux rates

[4], [13], [17]. Instead many prior approaches such as [2], [8], [20]

are based on single-bit fault models, which is no longer enough. Our

self-adaptive solution covers a much wider range of fault rates.

IV. A-SOFT-AES

In this section the self-adaptive SWIFT methodology for AES is

introduced. Furthermore, several SWIFT techniques are presented

that are used as a pool for our adaptive solution.

A. Self-Adaptive SWIFT-Technique

The different characteristics of different fault detection and correc-

tion techniques in terms of performance and fault-coverage2, drive

the need for an adaptive solution to efficiently protect the system

against a wide range of fault rates. Dependent on the actual fault

rate such a solution should always activate the detection/correction

technique that guarantees a fault-free execution with the lowest

performance (i.e. runtime) overhead. The possibility to implement

such a fault-tolerance technique is a great advantage of software-

based approaches. In hardware, adaptive solutions would lead to a

tremendous hardware overhead, which makes them infeasible.

For an adaptive technique two requirements have to be fulfilled.

1) It is necessary to have a pool of different SWIFT techniques

that have different characteristics in terms of reliability (fault-

coverage) and performance (runtime overhead), which have to

be known to select the best technique for the actual fault rate.

Therefore, all techniques in the pool need to be evaluated using

the desired AES implementation. For our pool such an analysis

is presented in Section V.

2) An accurate fault rate estimation during runtime of the en-

coding process is necessary, to allow a fault rate dependent

selection of SWIFT techniques.

For the second requirement we added special counters for each

operation (e.g. SubBytes) to the AES implementation that are in-

cremented (by 1) every time the error recovery for the corresponding

operation is invoked (see Fig. 2). Using these counters it is possible

to compute the recovery rate and with this to estimate the actual fault

rate. For low fault rates, when only single bit flips occur during two

detection points (e.g. before and after one AES round), this approach

allows to exactly calculate the actual fault rate, since in this case one

recovery step corrects only a single error. Admittedly, if several bit

flips occur between two detection points, the accuracy of the fault

rate estimation will be lower (counters are incremented by 1, but

multiple bit flips occurred). However, this can be compensated by

reducing the “distance” between two detection points (adaptively),

for example by checking every AES operation instead of checking

an entire AES round. In fact, such an dynamic adjustment will by

typically the case for increasing fault rates, since these require more

detection points for a more efficient error recovery. Furthermore, it is

not necessary to have an estimation accuracy of 100 %. Instead, one

can take the inaccuracy of the fault rate estimation into account when

defining the threshold values, which are used to select an adequate

SWIFT technique for the current conditions (see Fig. 2). Using the

adaptive SWIFT solution of Section V-E, the accuracy was always

better than 85 % which is good enough for the mentioned purpose. A

simplified version of such an adaptive SWIFT approach using three

different non-adaptive techniques is shown in Fig. 2.

Please note that the described self-adaptive methodology is generic,

i.e. it will work with all available software-based implementations of
2fault-coverage = percentage of detected faults

2013 IEEE 19th International On-Line Testing Symposium (IOLTS) 105



DataIn

AES Step/Round

DataTmp

cnt<X1

yes

no cnt<X2

yes

no

Protection1 Protection2 Protection3

Errors
detected

yes

no

cnt++

Counter to estimate fault rate

Fault-Rate dependent
adaptation

Recovery

DataOut

Fig. 2. Adaptive SWIFT approach for an AES step/round based on three
non-adaptive error detection techniques and replay for error correction

AES. Also the pool of SWIFT techniques is not limited. Furthermore,

it is very lightweight, i.e. the execution time overhead is negligible

due to the low costs (a few comparisons and increments).

Limitations and Improvements: A limitation of this adaptive

methodology is the fact, that a certain amount of time is required

to detect and determine a change in the fault rate (reaction time).

For example, a sudden, significant change of the fault rate will

not be reflected immediately by the counters, which means that an

inappropriate SWIFT technique can be used. This can either lead

to a higher than necessary performance overhead (annoying, but

acceptable) or can even cause undetected errors (unacceptable). This

can be also exploited by an attacker to extract information. Therefore,

the attacker fools the system first with a low fault rate, which will

lead to the activation of a SWIFT technique with low fault-coverage

but good performance. After a certain period, the attacker suddenly

increases the fault rate. Since the system cannot adapt immediately,

the fault-coverage will not be high enough to cope with all errors.

This can be used to extract critical information about the system.

To reduce this risk, the adaptive technique can be improved to be

more responsive, especially for increasing fault rates. Therefore, every

time an error is detected, a replay is invoked which automatically uses

a SWIFT technique with better fault-coverage and fault-detection

capabilities. By this means the responsiveness can be massively

improved and the risk of exploits or wrong results is reduced.

Furthermore, intermediate counter values can be stored and at the

end of the encryption process compared to pre-defined threshold

values. If a threshold is exceeded, a high temporary fault rate is

indicated. To prevent wrong outputs or exploits, the entire encryption

can be restarted in this case. To avoid an endless loop, a system

warning can be raised to inform the user about a potential (security)

problem and allowing him/her to abort the encryption.

B. Software-Based Error Detection Techniques for AES

1) Key Expansion: The key expansion is only performed once

before the entire encryption process is started. Hence, the runtime of

this step compared to the overall runtime is negligible (for 1 KByte of

data the time for this step is just 0.1 % of the total time). Nevertheless,

the ExpandKey step is a crucial step in terms of security and

reliability. If a fault affects the result of this step, every block of

the ciphertext will be wrong. Furthermore, this step also matters for

fault attacks since it is often tried to manipulate parts of the expanded

key, as discussed in [6]. For this reason a high fault-coverage is

desired. Due to the negligible runtime we use software-based TMR3

to enhance the fault-tolerance of this substep.

2) SubBytes: The SubBytes operation is one of the most so-

phisticated steps in the AES algorithm. Of course software-based

TMR (or higher-level redundancy techniques) can be used also for
3data triplication, execution on each of the 3 sets, bitwise majority voting

the SubBytes operation, however here the runtime overhead is not

negligible and will significantly affect the overall runtime (around

11 % overhead for the total runtime). Hence, TMR is not a viable

choice for low fault rates.

Instead a parity-based checking scheme can be used. However,

since SubBytes is non-linear it is not possible to just compare

the parity of the input byte(s) with the parity of the output byte(s).

Instead one can exploit the way this step is implemented in software.

Typically the SubBytes operation is implemented as lookup table

(LUT), which contains the output byte for each input byte. Hence,

this LUT can be extended to store also the parity relation between

input and output as proposed for hardware-based approaches in [8],

[19]. This information can then be used for error checking. Since

the LUT is constructed just once during the initialization phase or is

even pre-defined as a constant, the overhead for the additional parity

information is negligible for software-based implementations.

This approach can be combined with a parity protection for

ShiftRows, MixCols and AddKey, such that just a single parity

comparison is used for detecting errors occurring in these four steps.
3) ShiftRows, MixCols, AddKey: The other three substeps of AES,

ShiftRows, MixCols and AddKey, are linear operations. Hence,

bit-parity checking can be used as error detection scheme.

Depending on how many bytes, rows or columns are checked

together, one can adjust the fault-coverage and the performance of

this approach. The slowest one, which checks the most fine-grained

parities after each step is offering the best detection, while the fastest

one, i.e. the one which only checks the parity of the entire 128 bits

after all operations, is the worst in terms of fault-coverage. This

knowledge is used by A-SOFT-AES.

An alternative approach is to use a checksum-based error detection

scheme as presented in [20]. In this technique all round outputs are

xored together to calculate a first checksum. Since each round i can

be represented as A × Bi + Ki (with Ki as round key, and Bi

as SubBytes output), the final checksum output is
∑

i
A × Bi +

Ki. Using the distributivity law a second checksum can be derived

as follows: A × ∑
i
Bi +

∑
i
Ki. By comparing both checksums

errors within ShiftRows, MixCols and AddKey can be detected.

Furthermore, it is possible to exactly determine, which Byte is faulty.

The advantage of the checksum technique compared to the parity

protection method is a much better fault-coverage at the expense of

runtime. For this reason, our self-adaptive solution will use parity-

based detection schemes for low fault rates and the checksum scheme

for high fault rates (more details in Section V).
4) Mode of Operation: The mode of operation is a linear operation

that can easily be protected by parity bits. However, for high fault

rates, TMR is a better choice due to higher fault-coverage, since the

runtime of this operation is negligible.

C. Software-Based Error Correction Techniques for AES

So far various detection techniques (except TMR) were discussed.

The corresponding error correction methods are addressed now.

For our investigated SWIFT techniques, we always use an error

correction method by means of data recovery. Hence, whenever

an error is detected, some intermediate data is restored and the

encryption is restarted from the intermediate checkpoint. Since we use

software-based TMR for the ExpandKey step, there is no need for

an explicit correction scheme. In case of the Mode of Operation
we use an immediate re-execution if a bit flip was detected in this

step. For the other steps we use the following solutions.
• FullBlockRecovery: Error checking is done at the end of each

encryption pass. If an error is detected, the entire encryption

pass (all Nr rounds) for the current text block is re-executed.

106 2013 IEEE 19th International On-Line Testing Symposium (IOLTS)



• PartialBlockRecovery: Error checking is done after each round

of the encryption process. If an error is detected, the encryption

process is re-started beginning with the first round of the current

text block.

• FullRoundRecovery: Error checking is done after each round of

the encryption process. If an error is detected, only the last round

is re-executed.

• PartialRoundRecovery: Error checking is done after each round

of the encryption process. If an error is detected, only the com-

putations needed to calculate the erroneous byte are executed.

PartialRoundRecovery seems to be a very promising solution for

high fault rates as it reduces the recovery overhead and hence runtime.

However, for this technique much more computations are necessary

compared to the other solutions to determine which byte is faulty.

Hence, for low fault rates the checking overhead cannot be compen-

sated by the low recovery overhead. In terms of checking costs, the

first one is best. Again, this shows that only an adaptive technique

can deliver both, high performance and high fault-tolerance.

V. RESULTS

In this section we analyze the proposed SWIFT techniques by

comparing the results of the different approaches. We perform an

analysis with different fault rates between an average number of faults

per encryption pass4 of 10−4 and 10. Faults are injected at runtime

according to the model detailed in Section V-A. The runtime for fault

injection is not considered in our timing measurements.

A. Fault model and Fault Injection

Since the focus of this work is on SWIFT techniques to improve

the fault-tolerance of the different AES steps, we use the basic as-

sumption that only the operands and results of these operations can be

faulty, either because the data or the computations were compromised

by attacks/radiation. In contrast all data, which belongs to the control

flow is correct. If these are also considered as vulnerable, one can

extend the SWIFT techniques with control-flow checking approaches

[16], [18] to further enhance the fault-tolerance. In summary, in this

work only the results of the KeyExpand, SubBytes, ShiftRows,

MixCols, AddKey and mode of operation can be erroneous. Faults

in these steps are modeled as bit flips.

We use a fault model that allows multiple bit upsets per encryption

pass, which is much more realistic than a single bit flip assumption

[4], [13], [17]. In fact, the fault rate is variable. To achieve this we

use a probabilistic model based on the assumption that all vulnerable

bits have the same probability to be faulty. Therefore, the number of

occurring faults is of stochastic nature. Please note that if an operation
4encryption pass = encryption of one text block containing 128 bit

such as MixCols takes more time than another one, the probability

of bit flips during this operation is higher.

B. Setup

We use a plaintext of 10 MByte. The key length was set to 256 bit.

All experiments have been performed on a system with four 12-core

AMD Opteron-6174 processors with 2.2 GHz clock rate and with a

total system memory of 256 GByte of DDR3-RAM. The operating

system is RHEL 6.3 and for compilation of the different solutions the

build-in gcc-4.4.6 has been used with -O3 for runtime optimization.

Since the fault injection methodology is of probabilistic nature, all

experiments have been performed 100 times to gain reasonable data.

C. SWIFT-Analysis for SubBytes

For the SubBytes operation the following SWIFT schemes have

been investigated:

• TMR: Software-Based TMR.

• Parity: For each output byte a parity check is performed accord-

ing to the description in Section IV-B2. If an error is detected

the current round is re-executed (FullRoundRecovery).

• OneParity: The same parity checking and correction as for

“Parity” is performed, except that there is just a single parity

bit for all 16 Bytes.

To analyze the runtime and fault-tolerance behavior of these tech-

niques without interferences from other operations, fault injection

was disabled for all steps except SubBytes. The results of this

analysis are depicted in Figure 3. As one expects software-based

TMR delivers the best results in terms of fault-tolerance at the cost

of the highest runtime. However, at first glance it is surprising that

even TMR cannot achieve correct results, if the average error count

per text block is larger than 1. This can happen if in two of the three

(intermediate) results the same bit is erroneous. Although the chance

for this to happen in one single operation is very low (here: 5 ·10−6),

it can happen during the entire encryption run due to the total number

of SubBytes operations (here: >9 million).

For lower fault rates TMR is not a reasonable choice, due to its

runtime overhead of more than 11 %. Therefore, it is better to use

parity-based solutions for lower fault rates. The fastest solution with a

single parity bit (overhead is less than 3 %) can correct all faults until

the average number of faults exceeds 0.01 per encryption pass. The

slightly enhanced version, which protects every byte with a parity

bit, can even correct 10 times more faults per second.

In the adaptive solution, we use OneParity for low fault rates (up

to 0.01 faults/pass), for intermediate ones Parity is applied (from 0.01

to 0.1 faults/pass) and TMR and higher-level redundancy techniques

are activated for high fault rates (> 0.1 faults/pass).

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 0.5 1 2 5 10

C
o

rr
ec

t
C

y
p

h
er

te
x

t
[%

]

Faults per Encryption Pass

OneParity
Parity

A-SOFT-AES
TMR

(a) Fault-Tolerance Behavior

11.6

11.8

12.0

12.2

12.4

12.6

12.8

13.0

13.2

13.4

13.6

0.0001 0.001 0.01 0.1 0.5 1 2 5 10

R
u

n
ti

m
e

[s
]

Faults per Encryption Pass

OneParity
Parity

A-SOFT-AES
TMR

Nothing

(b) Runtime Behavior

Fig. 3. Comparison of software-based fault-detection methods for SubBytes (OneParity: Parity for 16 Byte; Parity: Parity for each Byte; A-SOFT-AES:
proposed self-adaptive solution; all use “Full Round Recovery” as correction technique)

2013 IEEE 19th International On-Line Testing Symposium (IOLTS) 107



0

20

40

60

80

100

0.0001 0.001 0.01 0.1 0.5 1 2 5 10

C
o

rr
ec

t
C

y
p

h
er

te
x

t
[%

]

Faults per Encryption Pass

OneParity
Parity

A-SOFT-AES
Checksum

TMR
OneTMR

(a) Fault-Tolerance Behavior

10

12

14

16

18

20

22

24

0.0001 0.001 0.01 0.1 0.5 1 2 5 10

R
u

n
ti

m
e

[s
]

Faults per Encryption Pass

OneParity
Parity

A-SOFT-AES
Checksum

TMR
OneTMR

Nothing

(b) Runtime Behavior

Fig. 4. Comparison of software-based fault-detection methods for ShiftRows, MixCols, AddKey (OneParity: Parity for 16 Byte with checking after
all three steps; Parity: Parity for each Byte with immediate checking; OneTMR: Voting after all three steps; TMR: Immediate voting; Checksum: [20];
A-SOFT-AES: proposed self-adaptive solution; Checksum, OneParity, Parity and SWIFT-AES use “FullRoundRecovery” as correction technique)

D. SWIFT-Analysis for ShiftRows, MixCols and AddKey

For the ShiftRows, MixCols and AddKey operations the

following SWIFT schemes have been investigated:

• TMR: Software-Based TMR with voting after each operation.

• OneTMR: Software-Based TMR with voting after all three steps.

• Parity: For each output byte a parity check is performed. Error

correction is performed by means of FullRoundRecovery.

• OneParity: The same parity checking and correction as for

“Parity” is performed, except that there is just a single parity

bit for all 16 Bytes.

• Checksum: The three steps are protected by the checksum of

[20]. Error correction by means of FullRoundRecovery.

Similar to the analysis of SubBytes, fault injection was also

disabled here for steps other than ShiftRows, MixCols and

AddKey. The results of this analysis are depicted in Figure 4.

Similar to the results for SubBytes, software-based TMR leads

to a huge performance penalty of 28 % for OneTMR and even 37 %

for TMR. Moreover, as observed before neither OneTMR nor TMR

can achieve correct encryption results under high fault rates, due

to the same reason as for SubBytes. In contrast the Checksum

scheme can detect all faults even for the highest investigated fault

rates. However, also the Checksum scheme has a relatively high

performance penalty of 17 % for low fault rates. Hence, our self-

adaptive A-SOFT-AES implementation uses a parity-based fault-

tolerance approach (OneParity with an overhead of 3 %) for low

fault rates (up to 0.01 faults/pass), and in all other cases applies

the Checksum method.

E. Error Correction Analysis

For all results presented so far, FullRoundRecovery was applied

as correction scheme. The reason for this choice is depicted in

Figure 5, for which we used the Checksum fault-detection scheme

and injected faults into the ShiftRows, MixCols and AddKey
operations. Obviously, the techniques (see Section IV-C for details) in

which more than one round is re-executed (i.e. FullBlockRecovery

and PartialBlockRecovery) have a huge runtime overhead for high

fault rates. This is due to the fact that also fault-free rounds may

have to be repeated. Moreover, FullBlockRecovery cannot maintain

correct results for high fault rates, since it can happen that the same

bit is flipped in two different rounds and hence remains undetected

during error checking. Although PartialRoundRecovery sounds great

in theory, as only very few operations have to be re-executed if a fault

is detected, it performs worse than FullRoundRecovery. The reason

for this behavior is that for PartialRoundRecovery more data has to

be calculated and checked to find the faulty bit, which increases the

runtime overhead (34 % instead of 17 %). In addition, if several bits

are faulty the 1-by-1 recalculation takes more time than to recalculate

all 128 bits at once. In summary, the best correction solution in terms

of runtime and fault-tolerance is FullRoundRecovery.

F. Putting Everything Together

As we have analyzed the different detection and correction

schemes, we put everything together and investigate the entire encryp-

tion process including ExpandKey and the Mode of Operation
(here: Counter mode (CTR)5). As explained in Section IV-B1

5A random vector (RV) is chosen. For each text block RV is incremented
by 1 and then encrypted. The plaintext is xored to the encrypted result.

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 0.5 1 2 5 10

C
o

rr
ec

t
C

y
p

h
er

te
x

t
[%

]

Faults per Encryption Pass

FullB
PartialB

FullR
PartialR

(a) Fault-Tolerance Behavior

10

100

1000

10000

100000

0.0001 0.001 0.01 0.1 0.5 1 2 5 10

R
u

n
ti

m
e

[s
]

Faults per Encryption Pass

FullB
PartialB

FullR
PartialR
Nothing

(b) Runtime Behavior

Fig. 5. Comparison of software-based error correction schemes (FullB: FullBlockRecovery; PartialB: PartialBlockRecovery; FullR: FullRoundRecovery;
PartialR: PartialRoundRecovery as described in Section IV-C)

108 2013 IEEE 19th International On-Line Testing Symposium (IOLTS)



0

20

40

60

80

100

0.0001 0.001 0.01 0.1 0.5 1 2 5 10

C
o

rr
ec

t
C

y
p

h
er

te
x

t
[%

]

Faults per Encryption Pass

OneParity
Parity+CS
TMR+CS

A-SOFT-AES

(a) Fault-Tolerance Behavior

10

12

14

16

18

20

22

24

26

0.0001 0.001 0.01 0.1 0.5 1 2 5 10

R
u

n
ti

m
e

[s
]

Faults per Encryption Pass

OneParity
Parity+CS
TMR+CS

A-SOFT-AES
Nothing

(b) Runtime Behavior

Fig. 6. Comparison of different SWIFT techniques for AES (Parity+CS: Parity for SubBytes, Checksum for ShiftRows, MixCols, AddKey, TMR for
ExpandKey, CTR; TMR+CS: Parity for ExpandKey, CTR, SubBytes, Checksum for ShiftRows, MixCols, AddKey; A-SOFT-AES: proposed
self-adaptive technique; OneParity: OneParity for SubBytes, ShiftRows, MixCols, AddKey, Parity for CTR and TMR for ExpandKey)

Operation Protection Fault Rate Runtime Overhead
ExpandKey TMR up to 10 faults/block 0.0 %

CTR
Parity up to 1 faults/block 0.1 %
TMR up to 10 faults/block 0.3 %

TABLE I
SWIFT-TECHNIQUES FOR EXPANDKEY AND CTR MODE THAT PROVIDE

CORRECT ENCRYPTION RESULTS IN 100 % OF THE RUNS

ExpandKey will be protected using software-based TMR, and the

CTR mode is protected with a parity bit for each byte for low fault

rates and by TMR for high fault rates (see Table I). Using these

techniques all errors in ExpandKey as well as in the CTR mode

were detected and corrected with negligible performance costs.

The runtime and fault-tolerance behavior of our self-adaptive A-

SOFT-AES is depicted in Figure 6. As one can see A-SOFT-AES is

always the fastest and most fault-tolerant technique over a wide range

of fault-rates (from 0.0001 upto 1 fault/pass). Moreover, the runtime

overhead due to the adaptive engine is negligible compared to non-

adaptive solutions. However, even A-SOFT-AES cannot guarantee

a fault-free execution. For example, for fault rates higher than 1

fault/pass the software-based TMR method for SubBytes cannot

mask all faults leading to erroneous encryption results. If fault-

tolerance for such fault rates is desired, one needs to add even higher

levels of modular redundancy such as 5MR to the SWIFT technique

pool that is used by A-SOFT-AES.

VI. CONCLUSION

The AES algorithm is one of the most widespread and secure

encryption techniques available today. However, fault attacks and

bit flips due to environmental disturbances are major challenges

and can significantly threaten the system security and reliability.

Therefore, techniques to increase the reliability and hence the security

of cryptographic systems are necessary.

This work presents the first self-adaptive, software-implemented

fault-tolerance approach for AES: A-SOFT-AES. It is based on a

variety of different detection and correction techniques such as parity-

protection, modular redundancy methods or sophisticated checksum

schemes out of which it chooses the best performing one that still

allows a fault-free encryption. Our experimental results show that A-

SOFT-AES minimizes the performance costs while guaranteeing high

fault-tolerance for a wide range of fault rates, which is impossible to

achieve with classical, non-adaptive solutions.

REFERENCES

[1] A. Barenghi et al., “Fault Injection Attacks on Cryptographic Devices:
Theory, Practice, and Countermeasures,” Proceedings of the IEEE, vol.
100, no. 11, pp. 3056–3076, Nov. 2012.

[2] G. Bertoni et al., “Error Analysis and Detection Procedures for a
Hardware Implementation of the Advanced Encryption Standard,” IEEE
Trans. on Computers, vol. 52, no. 4, pp. 492–505, Apr. 2003.

[3] E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key
Cryptosystems,” in Proc. of the 17th Annual Int’l Cryptology Conf. on
Advances in Cryptology, pp. 513–525, 1997.

[4] J. Bloemer and J. Seifert, “Fault Based Cryptanalysis of the Advanced
Encryption Standard (AES),” in Computer Aided Verification, vol. 2742,
pp. 162–181, Aug. 2003.

[5] D. Boneh et al., “On the Importance of Eliminating Errors in
Cryptographic Computations,” Journal of Cryptology, vol. 14, pp.
101–119, Jan. 2001.

[6] C.-N. Chen and S.-M. Yen, “Differential Fault Analysis on AES Key
Schedule and some Countermeasures,” in Proc. of the 8th Australasian
Conf. on Information Security and Privacy, pp. 118–129, 2003.

[7] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced
Encryption Standard, 1st ed. Springer Berlin / Heidelberg, Feb. 2002.

[8] G. Di Natale et al., “A Novel Parity Bit Scheme for SBox in AES
Circuits,” in Design and Diagnostics of Electronic Circuits and Systems,
pp. 1–5, April 2007.

[9] P. Dusart et al., “Differential Fault Analysis on A.E.S,” in Applied
Cryptography and Network Security, vol. 2846, pp. 293–306, Oct.
2003.

[10] N. FIPS, “Announcing the Advanced Encryption Standard (AES),”
Information Technology Laboratory, National Institute of Standards and
Technology, vol. 5, no. 4, 2001.

[11] B. Gill et al., “Comparison of Alpha-Particle and Neutron-Induced Com-
binational and Sequential Logic Error Rates at the 32nm Technology
Node,” in IEEE Int’l Reliability Physics Symp., pp. 199–205, Apr. 2009.

[12] R. Karri et al., “Fault-Based Side-Channel Cryptanalysis Tolerant
Rijndael Symmetric Block Cipher Architecture,” pp. 427–435, Oct.
2001.

[13] C. Kim and J.-J. Quisquater, “New Differential Fault Analysis on AES
Key Schedule: Two Faults Are Enough,” in Smart Card Research and
Advanced Applications, vol. 5189, pp. 48–60, 2008.

[14] N. N. Mahatme et al., “Comparison of Combinational and Sequential
Error Rates for a Deep Submicron Process,” IEEE Trans. on Nuclear
Science, vol. 58, no. 6, pp. 2719–2725, Dec. 2011.

[15] V. Ocheretnij et al., “On-Line Error Detection and BIST for the AES
Encryption Algorithm with Different S-Box Implementations,” in Proc.
of the 11th IEEE Int’l On-Line Testing Symp., pp. 141–146, 2005.

[16] N. Oh et al., “Control-flow checking by software signatures,” Reliability,
IEEE Trans. on, vol. 51, no. 1, pp. 111–122, 2002.

[17] D. Saha et al., “A Diagonal Fault Attack on the Advanced Encryption
Standard,” IACR eprint archive, vol. 581, pp. 293–306, Oct. 2009.

[18] R. Vemu et al., “Acce: Automatic correction of control-flow errors,” in
Test Conf., 2007. ITC 2007. IEEE Int’l, pp. 1–10, 2007.

[19] K. Wu et al., “Low Cost Concurrent Error Detection for the Advanced
Encryption Standard,” in Proc. of the Int’l Test Conf. on Int’l Test
Conf., pp. 1242–1248, 2004.

[20] C. Zhang et al., “An Algorithm Based Concurrent Error Detection
Scheme for AES,” in Cryptology and Network Security, vol. 6467, pp.
31–42, Nov. 2010.

2013 IEEE 19th International On-Line Testing Symposium (IOLTS) 109



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


