
MTTF-Balanced Pipeline Design
Fabian Oboril and Mehdi B. Tahoori

Chair of Dependable Nano Computing (CDNC), Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

Email: {fabian.oboril, mehdi.tahoori}@kit.edu

Abstract—As CMOS technologies enter nanometer scales, mi-
croprocessors become more vulnerable to transistor aging mainly
due to Bias Temperature Instability and Hot Carrier Injection.
These phenomena lead to increasing device delays during the
operational lifetime, which results in increasing pipeline stage
delays. However, the aging rates of different stages are different.
Hence, a previously delay-balanced pipeline becomes increasingly
imbalanced resulting in a non-optimized design in terms of
Mean Time to Failure (MTTF), frequency, area and power
consumption. In this paper, we propose an MTTF-balanced
pipeline design, in which the pipeline stage delays are balanced
after the desired lifetime rather than at design time. This can
lead to significant MTTF (lifetime) improvements as well as addi-
tional performance, area, and power benefits. Our experimental
results show that MTTF of the FabScalar microprocessor can
be improved by 2x (or frequency by 3 %) while achieving an
additional 4 % power, and 1 % area optimization.

I. INTRODUCTION

Nowadays almost all microprocessors ranging from low-
power embedded parts to high-performance processors use a
pipelined architecture to increase the instruction throughput
and by that means the performance. To maximize the perfor-
mance, designers follow the same paradigm since the dawn
of the first pipelined microprocessors: They try to balance all
pipeline stage delays at design-time (called: delay-balanced
pipeline). The advantage of this approach was the combination
of high throughput together with an efficient energy and area
usage. This was due to the fact, that as long as a pipeline
stage is faster than the slowest one (which determines the
frequency), it can be often made slower using gate sizing or
higher threshold voltage to save energy and die area [8], [11].

However, with the ongoing aggressive transistor scaling
of CMOS technology, reliability expressed in Mean Time to
Failure (MTTF) is becoming an important design constraint,
together with performance, power and area [2], [3], [13].
Transistor aging due to Bias Temperature Instability (BTI)
[15], [20] and Hot Carrier Injection (HCI) [17] leads to
increasing path delays and so increases pipeline stage delays
during runtime. Hence, nowadays the clock frequency of the
shipped parts can no longer be set according to the worst-case
delay at design time (tdesign). Instead, manufacturers have to
add safety margins to their delay-balanced designs, to ensure
that the chips will be functional for a certain lifetime (ttarget).

As we will show in this paper, the wearout rates (i.e.
delay increase due to BTI and HCI) vary widely among
pipeline stages, due to different temperature and usage rates.
For example, our experimental results show that the execution

stage of the FabScalar microprocessor [7] has a 3x higher
delay increase than the retire stage1 within the first 3 years.
Hence, although the original pipeline was delay-balanced, after
some operational runtime the stage delays become highly
imbalanced. This also affects MTTF2 of different pipeline
stages, which varies tremendously (more than 20x). Thus, one
stage can fail due to timing violation while others are still
executing correctly. Obviously such a design can be further
improved. Slow-aging stages should have less slack to save
area and energy, while fast-aging stages should have more
slack, to improve the overall MTTF.

In this paper we proposed a radically new MTTF-balanced
pipeline design scheme to replace the traditional delay-
balanced paradigm. Using this paradigm the stage delays are
balanced at ttarget and not at tdesign. Hence, also all stage
MTTFs are equal to ttarget. By that means the full optimization
potential for MTTF, area, power and performance can be
exploited.

We demonstrate these benefits using the FabScalar micro-
processor. While the delay-balanced design results in 20x
variation in MTTF of different stages, our MTTF-balanced
approach resolves this problem and yields a more than 2x
longer MTTF for the entire microprocessor, while achieving
the same performance (i.e. frequency) as the delay-balanced
design. In addition, the power consumption can be reduced by
4 % and the area by 1 %. If an improved MTTF is of secondary
interest, the gained headroom can be used to increase the clock
frequency by 3 % for a target lifetime of 3 years.

In summary, the key contributions of this work are:
• We present a generic flow based on standard commercial

tools to estimate the aging rate of a pipeline stage at
transistor-level as well as its MTTF considering detailed
temperature and signal information (delay, switching ac-
tivity, signal probabilities) for real-world applications.

• To avoid imbalanced pipeline stage MTTFs and improve
the microprocessor design in four dimensions3, including
reliability, we propose a novel, generic pipeline design
paradigm applicable to any in-order and out-of-order pro-
cessor: MTTF-balanced pipeline design. Furthermore, we
provide a design-flow that describes the design process
for such a pipeline.

1In out-of-order processors the retire stage restores the original instruction
order after the out-of-order execution

2In this work MTTF is equal to the time until first timing violation due to
aging occurs

3performance, area, power and MTTF978-3-9815370-0-0/DATE13/ c©2013 EDAA

The rest of this paper is organized as follows. In Section II
the BTI and HCI phenomena are introduced. The new design
paradigm is motivated in Section III, followed by the presen-
tation of the proposed MTTF-balanced design paradigm itself
in Section IV. In Section V, the flow to extract MTTF for each
stage is explained. Afterwards we present in Section VI our
experimental results followed by a discussion of related work
in Section VII. Finally, Section VIII concludes the paper.

II. TRANSISTOR AGING

Transistors degrade mainly due to Bias Temperature Insta-
bility (BTI) and Hot Carrier Injection (HCI) [2]. Both effects
lead to a threshold voltage shift of the impaired transistors,
which manifests in increasing gate and path delays. Hence,
these effects increase the pipeline stage delay during runtime.
In this section the impact on threshold voltage is explained.

A. BTI

BTI appears in two difference types: Negative BTI (NBTI)
and Positive BTI (PBTI). While NBTI is affecting PMOS
transistors, PBTI degrades NMOS transistors and emerged as
a reliability issue with the introduction of high-k gate oxides
[15]. In both variants, BTI consists of two different phases.
When a logic ’0’ (logic ’1’) is applied at the gate of a PMOS
(NMOS) transistor, this transistor is under (NBTI/PBTI)-
stress. During that phase, traps are generated in the interface
between gate oxide and channel, which increases |Vth|. In
contrast, when a logic ’1’ (logic ’0’) is applied at the gate
of the same transistor, some traps are filled, which leads
to a decreasing |Vth| (recovery phase). However, the initial
shift cannot be entirely compensated leading to an overall
Vth drift over time. Thereby, the shift depends on several
different aspects, e.g. temperature and the ratio between the
time a transistor is under stress and total time (duty cycle). For
estimating the Vth shift the model presented in [20] is used.

B. HCI

HCI is mainly affecting NMOS transistors, where acceler-
ated electrons inside the channel collide with the gate oxide
interface and thereby create electron-hole pairs. Thus, free
electrons get trapped in the gate oxide layer, which leads to
an increasing Vth. In contrast to BTI, the Vth shift due to HCI
is irreversible [20]. The Vth shift has an exponential relation
with temperature [4] and since “hot” energetic electrons are
generated when the NMOS transistor is making a transition,
the Vth shift is also very sensitive to the number of transitions
[17], i.e. clock frequency, runtime and switching activity.
Putting all this together leads to the model detailed in [14],
which we use in this work for estimating the Vth shift.

III. MOTIVATION AND MAIN IDEA

As mentioned in Section II, BTI and HCI can significantly
increase pipeline stage delays during runtime. To illustrate this
circumstance and motivate our work, we use as an example
FabScalar, an out-of-order, 11-stage, superscalar processor [7],
which was synthesized with Synopsys Design Compiler and

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
2.0

D
el

ay
in

ns

Fetch1

Fetch2

Decode

Rename

Dispatch

Issue
RegRead

Execute

LSU
W

riteBack

Retire

1

5

25
35+

M
T

T
F

in
ye

ar
s

Delayt=0 Delayt=3y MTTF

Fig. 1. Delay after 0 and 3 years and MTTF for different pipeline stages of
the FabScalar microprocessor

the TSCM 65 nm library. However, our idea is not limited to
this specific processor or library and can be applied to every
in-order or out-of-order pipelined microprocessor.

To investigate the aging rates of different pipeline stages, we
extracted the delay at design time and after 3 years (= ttarget)
for each stage using the flow described later in Section V.
The results of this analysis, illustrated in Figure 1, clearly
show that different pipeline stages have different wearout rates.
While the delay of the execution stage increases by 9 % within
3 years, the delay of the issue stage increases just by 4 %,
although their delays at design time were similar (≈ 1.60 ns).
These differences are due to the fact that the parameters
influencing aging, i.e. temperature and usage (duty cycle,
switching activity) are different for different pipeline stages.
Also the imbalance in terms of MTTF (given a timing slack of
10 %) can be huge. Between the execution stage, which starts
to fail first, and the issue stage there is a factor of more than
10x difference. In the worst case (RegRead) the imbalance is
even more than 20x. This means that one pipeline stage already
produces timing failures, while other stages are still running
correctly. Hence, the latter are overdesigned. Furthermore, we
observed that the timing critical stage changes over runtime.
At the beginning it is Fetch1, which changes to Execute after
less than 2 years.

Please note that for other microprocessor designs or other
technology libraries Figure 1 might look different, i.e. other
stages age faster, have different MTTF values, etc. However,
the overall observation of delay and MTTF imbalance after a
certain runtime remains valid (e.g. in [9] similar results are
reported for the IVM microprocessor).

Since MTTF of the microprocessor is determined by the
smallest MTTF of all pipeline stages, and the clock frequency
is mandated by the slowest stage after the target lifetime ttarget,
it is obvious that the described imbalance leads to a sub-
optimal design. Looking at the criticality of different pipeline
stages at ttarget, there are two possible optimization strategies:
• First, stages that are faster (i.e. have more slack) than

the critical stage after ttarget can be designed slower

tdesign ttarget t′targetttargettdesign
RuntimeRuntime

D
el

ay

D
el

ay

d∗

d′

d∗

d′

most critical stage S0

at design time

near critical stage S1

at design time

most critical stage
at design time

near critical stage S1

at design time

make S1 faster
(increase its slack)

Fig. 2. Abstracted graphic to illustrate the effect of delay reduction on MTTF and performance
Left (Delay-Balanced): At tdesign stage S1 has less delay than stage S0, but ages faster ⇒ For clock period = d′ the target lifetime = ttarget
Right (MTTF-Balanced): S1 is accelerated ⇒ After ttarget stages S0 and S1 have same delay (d∗) ⇒ smaller clock period possible (d∗ instead of d′)
Alternatively: For same clock period (d′) a longer lifetime is possible (t′target)

(i.e. with less slack), by applying appropriate gate-sizing
techniques, using a higher threshold voltage, etc., leading
to extra energy and area savings [8], [11].

• Second, if a stage S1 has more delay after ttarget than
the design-time-critical stage S0 after ttarget, the first one
can be designed faster (i.e. with more slack). This can
be used in two different ways, both shown in Figure 2.
First, the clock frequency (i.e. clock period) can be kept
constant, so that a higher MTTF can be achieved (that
means that ttarget can be increased). In Figure 2 that means
that the clock period remains at d′ and that the target
lifetime increases to t′target. In the second case, MTTF is
kept constant (i.e. equal to ttarget), so that the clock period
can be reduced (i.e. higher frequency, meaning higher
performance). Using the annotations from Figure 2 that
means that the new clock period is d∗ < d′.

Hence, in summary, slow-aging stages should be designed
with less slack (i.e. slower) to save area and energy, while
the timing slack for fast-aging stages should be increased (i.e.
speed-up), to improve their MTTF and in turn the MTTF of
the entire microprocessor or the overall performance (i.e. clock
frequency). Thereby. the key design aspect is that the pipeline
stage delays should be balanced after the target lifetime
and not at design time. Since this is not achievable using
the traditional delay-balanced design approach, we propose
a new MTTF-balanced pipeline design. We will explain this
paradigm in detail in the following section.

IV. MTTF-BALANCED PIPELINE DESIGN

The key idea of the MTTF-balanced pipeline design is that
the pipeline stage delays are balanced after the desired lifetime
ttarget rather than at design time tdesign. Hence, also MTTFs of
all stages are equal to ttarget. In the following we will explain
the flow to generate an MTTF-balanced pipeline. This flow,
detailed in Figure 3 leads to a design that is as fast as possible
for a given target lifetime ttarget.

The starting point of the transformation process is a delay-
balanced design, as it is used nowadays (Step 1). Next, the
delay, d∗, after the given target lifetime ttarget of the critical

stage at design time is extracted using the flow presented later
in Section V (Step 2). Since this stage cannot be designed any
faster (otherwise it would not be critical at design time), the
clock period of the final MTTF-balanced pipeline cannot be
smaller than this delay. Since the final design should be as fast
as possible, d∗ will work as a reference for the clock period.

The next step (Step 3) is to extract the delay di of each
pipeline stage after ttarget and to compare it with d∗. If

1. Generate a delay-balanced design
2. d∗ = delay at ttarget of stage, that is critical at tdesign

d
′

= delay at ttarget of stage, that is critical at ttarget
/* ⇒ clock period of delay-balanced design = d′ > d∗ */
3. Forall stages i = 0, . . . , n do

Extract di = delay at ttarget of stage i
stageiold = current version of stage i
/* if stage is faster than necessary */
If (di < d∗) then

stageinew = new version of stageiold with more delay at tdesign
/* if stage is slower than necessary */
Elseif (di > d∗) then

stageinew = new version of stageiold with less delay at tdesign
/* if no speedup is possible adjust d∗ */
If (stageinew == stageiold) then
d∗ = di
Goto 3. /*restart with new d∗*/

Endif
Else

stageinew = stageiold
Endif

End
/* Extract new delay information at ttarget */
4. Forall stages i = 0, . . . , n do

Extract di,new = delay at ttarget of stageinew
/* if old version was faster and new version is slower take old one */
If (di,new > d∗) and (di < d∗) then

stageinew = stageiold
Endif

End
/* If no more modifications are possible, transformation is done */
5. Forall stages i = 0, . . . , n do

If (stageiold 6= stageinew) then
Goto 3. /* restart */

Endif
End

6. Done. /* generated MTTF-balanced design */

Fig. 3. Algorithm to transform a delay-balanced design into an MTTF-
balanced design

the delay is smaller than d∗ (i.e. the stage is faster than
necessary), a new, slower version of this pipeline stage will
be generated using gate sizing, higher threshold voltage, and
so on [8], [11]. Therefore, we adjust the timing constraints for
this pipeline stage and re-synthesize it. This means that also
paths are reorganized and optimized for the new constraints,
which further enhances energy and area efficiency. In case re-
synthesis is not feasible, it is also possible to modify only
small sub-circuits or gates [6].

If the delay di is greater than d∗ (i.e. stage is slower than
necessary), a new, faster version (using gate sizing, etc.) will
be generated. If this is not possible, the final design has to use
a clock frequency of at least di. Hence, d∗ will be increased
and set to di. In that case Step 3 has to be restarted.

After all pipeline stages are analyzed and eventually mod-
ified, their new delay information is extracted (Step 4). Here
it is extremely important to investigate all stages in one step
and not only those that have been changed in Step 3. This
is due to the fact that as long as one stage is modified, the
power consumption and hence the temperature distribution
will change, which can affect also the wearout and hence the
delay of other stages. If it is detected in Step 4 that a stage,
which was previously faster than necessary, is now slower
than necessary, the changes leading to this situation will be
reverted and the previous implementation will be used. Since
these situations are undesired, the delay differences between
the new and the old implementation should be very small.
Therefore, we use a resolution of 0.01 ns for our experiments.

If there is at least one modified stage remaining after Step 4,
again Step 3 followed by Step 4 will be executed until no
pipeline stage is modified anymore, i.e. until no stage can
be tuned further. When this saturation state is reached, the
transformation to the MTTF-balanced design is finished.

Please note that in some application areas it might be more
important to minimize the die area or power consumption,
instead of performance (clock frequency). In that case, the
transformation procedure is very similar to the one explained
before. The only difference is, that d′ is used as reference delay
in place of d∗. Hence, no stage will be accelerated. Instead all
stages, beside the one that is critical at ttarget, will be designed
slower, hence with less power and area consumption.

The runtime for the transformation process depends mainly
on the number of iterations, i.e. the number of synthesis steps
and delay/MTTF estimation steps. In our case the latter is
dominant (hours vs. minutes). Hence, the transformation time
is proportional to the number of pipeline stages multiplied with
the average time needed for the MTTF estimation.

V. MTTF-ESTIMATION FLOW

To accurately evaluate the aging rates (delay changes) and
MTTF values for each pipeline stage, a suitable analysis flow
is necessary. In this section a generic flow is described, which
is based on standard industrial design tools (see Table I).

As shown in the Section II, the aging rate of a transistor
strongly depends on its duty cycle and its switching activity.
Moreover, these values influence the power consumption of the

Netlist Benchmark

Logic Simulator
(e.g. Cadence NC Verilog)

VCD File(s)

Power Simulator
(e.g. Synopsys PrimeTime)

Power for each Stage

Temperature Model
(e.g. HotSpot)

Temperature for each Stage

Critical Paths

Aging Analyzer
(inhouse)

MTTF for each Stage

Floorplan

Fig. 4. Flow for extracting MTTF for each pipeline stage

microprocessor and hence the temperature distribution, which
in turn affects the aging rate of the transistors. Hence, it is very
important to accurately calculate these values. Therefore, a
gate-level description of the pipeline stage under investigation
is necessary, to monitor all signals of this stage, while the
processor executes representative workloads (applications).

Hence, the first step of the estimation flow, depicted in
Figure 4, is to generate a gate-level description (netlist) of
the pipeline stage under investigation. Afterwards this gate-
level description is used to simulate the pipeline stage be-
havior, when an application (here: SPEC2000 benchmarks)
is executed by the processor. During the simulation, the
behavior of all signals is stored in a Value Change Dump
(VCD) file. This VCD file is then used by a power simulator
to extract the power consumption for each (sub)-block of
the investigated pipeline stage. The results are given to a
temperature model (e.g. HotSpot [10]), which calculates the
temperature for each block. Since, the temperature of a block
strongly depends on the temperature of the surrounding blocks,
the temperature model has to consider the floorplan of the
entire microprocessor as well as the power information for
all other pipeline stages. The last step is to extract signal
probabilities (probability that signal value is ’1’) and switching
activity from the VCD file. This data is used together with
the temperature information to calculate the threshold voltage
shift for every transistor in the design under investigation using
transistor-level aging models (here: model from [20] for BTI,
model from [14] for HCI). By that means the delay degradation
for each gate, each path and hence, for the entire pipeline

Synthesis + Path Extraction Synopsys Design Compiler D-2010.03-SP4
Simulation + VCD-Generation Cadence NC Sim 10.20-s073

Power Extraction Synopsys PrimeTime F-2011.06-SP3-2
Temperature Extraction HotSpot 5.02 [10]

Aging Analysis Inhouse C++-Tool

TABLE I
TOOLS USED FOR RESULT EXTRACTION

stage can be calculated. Together with the information about
the clock period the time until timing violations occur, i.e.
MTTF, can be finally extracted. Please note that it is practically
impossible to investigate all paths for large pipeline stages.
Therefore, we only analyze the 10 % most critical paths.

The runtime of this flow is mainly determined by the
runtime of the logic simulator and the power simulator, since
the temperature model and the aging analyzer are heavily
parallelized. For example, PrimeTime needs more than 6 hours
to calculate the power consumption for 106 clock cycles for
the Load-Store-Unit (more than 60,000 gates). A possible
simplification is to use Design Compiler to extract the power
consumption. However, Design Compiler does not consider the
actual application behavior, but assumes switching activities
and signal probabilities. Hence, the power information is not
that accurate compared to PrimeTime, which considers the
running application. Nevertheless this assumed data can be
used, if for example the time available for MTTF estimation
is very limited. Furthermore, also the assumed values for
switching activities and signal probabilities can be used for
the aging estimation, instead of analyzing a VCD file. Of
course, accuracy will be impaired, but the time for the MTTF
estimation will be reduced further. By this means it would be
also possible, to extend Design Compiler in such a way, that
beside timing, area and power constrained synthesis also an
MTTF-constrained synthesis is available.

VI. EXPERIMENTAL RESULTS

In this section a comparison using the FabScalar micro-
processor [7] between the proposed MTTF-balanced design
paradigm and the classical delay-balanced one is presented.
The MTTF-balanced design was generated using the flow
presented in Section IV for ttarget = 3 years. For the evaluation
we use 6 SPEC2000 benchmarks (bzip, gap, gzip, mcf, parser,
vortex) and simulated the processor behavior for 106 cycles
after a warmup. Table II summarizes the main results.

For both designs, the (worst-case) delay at design time
and after 3 years was extracted (for each of the six SPEC
benchmarks). The worst-case delay values over all benchmarks

are reported in Table II, since these values determine MTTF
as well as the clock period of the microprocessor. For this
reason, the delay-balanced design has to use a clock period
of at least 1.76 ns (i.e. 10 % timing margin) to achieve a
lifetime (MTTF) of at least 3 years. In contrast the MTTF-
balanced design needs just a clock period of 1.71 ns. Hence,
the frequency can be increased by 3 %, yielding a better
performance, while MTTF remains the same. This is mainly
due to the fact, that the execution units and the Load-Store-
Unit (LSU) can be designed faster using gate sizing, to
increase their timing slack. All other stages could be designed
with less slack, which made it possible for some stages to
use a higher threshold voltage (20 % increase) in the (near)-
critical paths of the stages. By this means the average power
consumption over all benchmarks (extracted with PrimeTime)
of the MTTF-balanced design is 4 % lower than the one of
the traditional delay-balanced pipeline for a clock period of
1.76 ns. In addition also the area for the MTTF-balanced
pipeline is slightly smaller (- 1 %).

If one does not want to increase the clock frequency (i.e.
clock period remains with 1.76 ns), the MTTF-balanced design
can achieve a lifetime (MTTF) of at least 7 years, which
is an improvement of more than 2x. If the clock period
should be equal to 1.71 ns, the MTTF of the delay-balanced
design would reduce to just 1 year due to the front-loaded
nature (delay change is a “sqrt-like” function of time) of the
investigated transistor aging phenomena, while the MTTF-
balanced approach can achieve a lifetime of 3 years. This
means an improvement of more than 3x. Since, also a middle
way is possible, the MTTF-balanced design can allow higher
clock frequencies along with higher MTTF.

VII. RELATED WORK

A lot of research is done at various design levels to alleviate
the effects of BTI and HCI. To name just a few ones, special
NBTI-resilient processors are proposed in [1] and specific
input patterns at the primary inputs of a subcircuit can mitigate
the NBTI effect during idle periods [21]. Furthermore, power
gating [5], adaptive body biasing and enhanced instruction

Stage

Delay-Balanced MTTF-Balanced
delay MTTF1 MTTF2

Power Area delay MTTF1 MTTF2
Power Area Changes@tdesign @t3 years (1.71 ns) (1.76 ns) @tdesign @t3 years (1.71 ns) (1.76 ns)

[ns] [ns] [years] [years] [mW] [µm2] [ns] [ns] [years] [years] [mW] [µm2]
Fetch1 1.60 1.71 3.0 7.0 6.38 22822 1.60 1.71 3.0 7.0 6.28 22822 untouched
Fetch2 1.60 1.69 4.0 11.0 8.40 35549 1.62 1.71 3.0 8.0 8.38 35533 GS
Decode 1.58 1.65 12.0 27.0 1.57 22524 1.66 1.71 3.0 22.0 1.12 22988 GS, HVT
Rename 1.55 1.62 50+ 50+ 0.60 3992 1.65 1.70 3.0 50+ 0.44 3992 GS, HVT
Dispatch 1.57 1.59 50+ 50+ 0.13 1880 1.65 1.71 3.0 50+ 0.09 1574 GS, HVT

Issue 1.60 1.67 10.5 30.5 5.97 32259 1.64 1.71 3.0 8.5 5.96 32236 GS
RegRead 1.51 1.59 50+ 50+ 1.24 13820 1.64 1.68 3.0 50+ 0.86 13524 GS, HVT
Execute 1.60 1.76 1.0 3.0 1.79 29103 1.55 1.69 3.0 7.5 1.81 29071 GS

LSU 1.60 1.72 1.5 5.5 27.2 117781 1.58 1.69 3.0 8.0 27.3 116508 GS
WriteBack 1.53 1.59 50+ 50+ 2.19 2696 1.67 1.70 3.0 50+ 1.40 2667 GS, HVT

Retire 1.57 1.61 50+ 50+ 0.89 3133 1.67 1.71 3.0 50+ 0.58 3119 GS, HVT

Entire CPU 1.60 1.76 1.0 3.0 56.4 285559 1.67 1.71 3.0 7.0 54.2 284034
+ 4 % -3 % +300 % +233 % - 4 % -1 %

TABLE II
COMPARISON OF A DELAY-BALANCED AND MTTF-BALANCED DESIGN FOR THE FABSCALAR MICROPROCESSOR IN TERMS OF WORST-CASE DELAY,
WORST CASE MTTF, AVG. POWER (WITHOUT SRAM) AND AREA (WITHOUT SRAM) CONSIDERING ALL BENCHMARKS (GS = GATE SIZING, HVT =

HIGHER THRESHOLD VOLTAGE IN THE CRITICAL PATH, MTTF1 IS MTTF FOR CLOCK PERIOD OF 1.71 NS, MTTF2 IS MTTF FOR 1.76 NS)

as well as application scheduling techniques [19] have been
proposed to mitigate the effect of NBTI and HCI. All these
techniques are orthogonal to our work and can be used in
combination with our proposed design paradigm.

In the context of pipeline delay re-balancing, a famous
technique is cycle-time stealing/borrowing. For example in
[12], [18] such approaches are proposed to re-balance the
pipeline delay due to process variation. Cycle time is “stolen”
from fast stages and given to slow stages, so that the pipeline
can operate at a clock period closer to the average stage delay.
Potentially this idea can be used similarly to our MTTF-
balanced design paradigm. Stages that have high aging rates
take some cycle time from stages with lower aging rates, to
increase their MTTF. However, using these techniques, cycle
time has to be redistributed, which is a complex task and not
always possible. Using our design paradigm, no redistribution
is necessary, which makes our technique suitable for almost
every design. In addition, our approach can improve power and
area efficiency, which is not possible if cycle-time stealing is
applied for a delay-balance pipeline.

Another re-balancing technique using cycle-time borrowing
is presented in [16], which is intended to balanced the power
consumption of different pipeline stages. By that means the
problem that some pipeline stages consume much more energy
than others is reduced. Potentially this can also help to avoid
hotspots, which can slow down transistor aging. However,
since the purpose is to minimize the overall power consump-
tion, the timing slack for each pipeline stage is minimized
after applying cycle-time borrowing to the pipeline. This
slack reduction can negatively affect MTTF. In contrast, our
technique tries to increase the timing slack of some stages, to
improve their MTTF and so MTTF of the entire processor.

In [9] a flow to estimate the delay degradation of a pipeline
stage is introduced, which is similar to the flow presented in
Section V. However, this flow can just extract lower and upper
bounds for aging induced delay-degradation, but not the real
value, which our flow can.

VIII. CONCLUSION

Microprocessors at nano-scale are exposed to various relia-
bility issues, which include a more rapid aging of all compo-
nents. This leads to increasing pipeline stage delays during the
operational lifetime, resulting in imbalanced designs in terms
of delay and MTTF, if the delays are balanced at design time.
In this paper we have shown that this imbalance hides a lot
of optimization potential for higher clock frequencies, longer
lifetimes (i.e. higher MTTF) as well as reduced power and
area consumption.

Therefore, we proposed a radically new MTTF-balanced
pipeline design scheme to replace the traditional delay-
balanced paradigm. Using the new approach, the imbalance
during runtime is minimized, allowing “better” designs. Our
experimental results show that for the FabScalar microproces-
sor the MTTF-balanced design yields a more than 2x longer
MTTF, while the same performance (i.e. frequency) as for
the delay-balanced design can be maintained. In addition, the

power consumption can be reduced by 4 % and the area by
1 %. If an improved MTTF is of secondary interest, the gained
headroom can be used to increase the clock frequency by 3 %
for a target lifetime of 3 years.

REFERENCES

[1] J. Abella, X. Vera, and A. Gonzalez, “Penelope: The NBTI-Aware
Processor,” in Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture, Dec. 2007, pp. 85–96.

[2] K. Bernstein et al., “High-performance CMOS variability in the 65-
nm regime and beyond,” IBM Journal of Research and Development -
Advanced silicon technology, pp. 433–449, Jul. 2006.

[3] S. Borkar, “Designing Reliable Systems from Unreliable Components:
The Challenges of Transistor Variability and Degradation,” IEEE Micro,
pp. 10–16, Nov. 2005.

[4] A. Bravaix et al., “Hot-Carrier Acceleration Factors for Low Power
Management in DC-AC stressed 40nm NMOS node at High Tempera-
ture,” in IEEE International Reliability Physics Symposium, Apr. 2009,
pp. 531–548.

[5] A. Calimera, E. Macii, and M. Poncino, “NBTI-Aware Power Gating
for Concurrent Leakage and Aging Optimization,” in Proceedings of the
14th ACM/IEEE International Symposium on Low Power Electronics
and Design, Aug. 2009, pp. 127–132.

[6] J. Chen, S. Wang, and M. Tehranipoor, “Efficient Selection and
Analysis of Critical-Reliability Paths and Gates,” in Proceedings of the
Great Lakes Symposium on VLSI, May 2012, pp. 45–50.

[7] N. Choudhary et al., “FabScalar: Automating Superscalar Core Design,”
IEEE Micro, pp. 48–59, May 2012.

[8] O. Coudert, “Gate Sizing for Constrained Delay/Power/Area
Optimization,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, pp. 465–472, Dec. 1997.

[9] M. DeBole et al., “New-Age: A Negative Bias Temperature Instability-
Estimation Framework for Microarchitectural Components,” Interna-
tional Journal of Parallel Programming, pp. 417–431, Aug. 2009.

[10] W. Huang et al., “HotSpot: A Compact Thermal Modeling Methodology
for Early-Stage VLSI Design,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, pp. 501–513, May 2006.

[11] T. Karnik et al., “Total Power Optimization by Simultaneous Dual-Vt
Allocation and Device Sizing in High Performance Microprocessors,”
in Proceedings of the 39th Annual Design Automation Conference, Jun.
2002, pp. 486–491.

[12] X. Liang, G. Wei, and D. Brooks, “ReVIVal: A Variation-Tolerant
Architecture Using Voltage Interpolation and Variable Latency,” IEEE
Micro, pp. 127–138, Jan. 2009.

[13] V. Narayanan and Y. Xie, “Reliability Concerns in Embedded System
Designs,” Computer, pp. 118–120, Jan. 2006.

[14] F. Oboril and M. B. Tahoori, “ExtraTime: Modeling and Analysis
of Wearout due to Transistor Aging at Microarchitecture-Level,” in
Proceedings of the 42nd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, Jun. 2012.

[15] S. Pae et al., “BTI Reliability of 45 nm High-K + Metal-Gate Process
Technology,” in IEEE International Reliability Physics Symposium, May
2008, pp. 352–357.

[16] J. Sartori, B. Ahrens, and R. Kumar, “Power Balanced Pipelines,”
in Proceedings of the 2012 IEEE 18th International Symposium on
High-Performance Computer Architecture, Feb. 2012, pp. 1–12.

[17] E. Takeda et al., “New hot-carrier injection and device degradation in
submicron MOSFETs,” IEEE Proceedings I, Solid-State and Electron
Devices, pp. 144–150, Jun. 1983.

[18] A. Tiwari, S. R. Sarangi, and J. Torrellas, “ReCycle: Pipeline Adaptation
to Tolerate Process Variation,” SIGARCH Computer Architecture News,
pp. 323–334, Jun. 2007.

[19] A. Tiwari and J. Torrellas, “Facelift: Hiding and slowing down aging in
multicores,” in Proceedings of the 41st Annual IEEE/ACM International
Symposium on Microarchitecture, Nov. 2008, pp. 129–140.

[20] W. Wang et al., “Compact Modeling and Simulation of Circuit Relia-
bility for 65-nm CMOS Technology,” IEEE Transactions on Device and
Materials Reliability, pp. 509–517, Dec. 2007.

[21] Y. Wang et al., “On the efficiancy of Input Vector Control to mitigate
NBTI effects and leakage power,” in Proceedings of the International
Symposium on Quality of Electronic Design, Mar. 2009, pp. 19–26.

