
Reducing NBTI-induced Processor Wearout by Exploiting
the Timing Slack of Instructions

Fabian Oboril, Farshad Firouzi, Saman Kiamehr and Mehdi B. Tahoori
Chair of Dependable Nano Computing (CDNC), Karlsruhe Institute of Technology (KIT)

Haid-und-Neu-Str. 7
76131 Karlsruhe, Germany

fabian.oboril@kit.edu, firouzi@ira.uka.de, kiamehr@kit.edu, mehdi.tahoori@kit.edu

ABSTRACT
Transistor aging due to Negative Bias Temperature Insta-
bility (NBTI) is a major reliability challenge for embedded
microprocessors at nanoscale. It leads to increasing path
delays and eventually more failures during runtime. In this
paper, we propose a novel microarchitectural approach com-
bining aging-aware instruction scheduling with specialized
functional units to alleviate the impact of NBTI-induced
wearout. To achieve this, the instructions are classified de-
pending on their worst-case delay into critical (i.e. the in-
structions whose delay is close to the cycle boundary) and
non-critical instructions (i.e. those instruction with larger
timing slack). Each of these classes uses its own (specialized)
functional unit(s). By that means it is possible to increase
the idle ratio of the units executing the critical instructions,
which can be used to extend lifetime by up to 2.3x in average
compared to the usually used balanced scheduling policy.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Test-
ing, and Fault-Tolerance

Keywords
instruction scheduling, NBTI, functional unit, transistor ag-
ing, microarchitecture

1. INTRODUCTION
Aggressive transistor scaling of CMOS technology over

the past decades allowed increasing transistor counts and by
this means the implementation of more and more features
in modern microprocessors. This also enabled the success-
ful entrance of embedded systems in almost all areas of our
daily life. Though, many of these systems have very tight re-
liability constraints. However, with decreasing feature sizes
to nanoscale dimensions, reliability is threatened by various
challenges. Thereby, a major reliability issue of nanoscale
embedded processors is fast transistor aging [6, 10, 24].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’12, October 7–12, 2012, Tampere, Finland.
Copyright 2012 ACM 978-1-4503-1426-8/12/09 ...$15.00.

Among several phenomena Negative Bias Temperature In-
stability (NBTI) is the dominant transistor wearout effect [6,
32]. It leads to a shift of the threshold voltage Vth of the
affected transistors, which manifests in an increasing switch-
ing delay of these transistors. Over the time, this results in
increasing path delays, which can lead to timing violations.

To combat these runtime degradation issues manufactur-
ers are currently adding guardbands to their designs, to en-
sure that the chips will be functional for a certain lifetime.
However, this overdesign increases development and man-
ufacturing costs, which is crucial for the embedded seg-
ment where low costs are a primary target. Hence, new
approaches are necessary to take further advantage of scaled
technology nodes. Therefore, a lot of research is done at var-
ious design levels. To name just a few, special NBTI-resilient
circuits [3], input vector control [15, 16, 33], power gating
[12], adaptive body biasing [29], dynamic voltage and fre-
quency scaling (DVFS) [5, 26] and enhanced instruction and
application scheduling techniques [28, 29] are some of the ex-
isting aging mitigation methods. The last two techniques try
to balance the necessary calculations on the available units
(cores) to achieve equal wearout states on all units (cores),
which should guarantee a longer lifetime of these parts.

Our investigation of various (embedded) microprocessors
shows that the execution stage (i.e. the functional units) in
a pipelined microprocessor is among the most timing-critical
stages and hence to improve the overall lifetime of the micro-
processor, the execution stage must be dealt with. However,
as we will show in this paper, balancing the number of exe-
cuted instructions (workload) over several functional units is
not always the best aging mitigation strategy. This is mainly
due to the fact that within the same clock cycle boundaries,
different instructions executed by the same functional unit
have different timing criticality and consequently different
time slacks. Although all instructions executed in an ALU
have an execution time of one cycle, there are some instruc-
tions whose delay is close to one cycle (e.g. arithmetic op-
erations with long operands), while others need much less
time (e.g. simple logic operations). Hence, the first group
of instruction is called timing-critical (TC), the other one
is named non-timing-critical (NTC). In fact, this makes no
difference from the performance point of view (always one
cycle). However, in terms of aging, when the path delay of
the circuit increases, the TC instructions start to fail (i.e.
have timing delays) while NTC instructions will continue to
be executed correctly for a much longer time. This observa-
tion is the main motivation behind the technique presented
in this work and illustrated in Figure 1. We plan to ex-

443

Instruction
Delay

cycle boundary

AgingAging

TC InstructionsNTC Instructions

O
cc
u
rr
en

ce
ra
te

Figure 1: Illustration of TC and NTC instructions

ploit this information for aging-aware scheduling of different
instruction classes on different functional units.

If an embedded microprocessor with two functional units
of the same type (e.g. ALU) uses a balanced instruction
scheduling technique, both units will fail almost after the
same time. Now imagine, that one unit is used only for
the TC instructions and the other one just for the NTC
instructions. Since the latter have a delay which is far less
than the TC instructions, the first unit will always fail first
and hence determines the lifetime. In addition, as long as the
fraction of TC instructions is less than 50 %, the critical unit
will execute less instructions than in the first case. Hence,
the idle ratio of this unit is increased. This can be used in
combination with various architectural techniques such as
power gating [12] or input vector control for NOP-operations
[16] to reduce the NBTI effect and hence, to increase the
lifetime of this unit.

Based on this idea, in this paper we propose a novel mi-
croarchitectural approach combining aging-aware instruc-
tion scheduling with specialized functional units to allevi-
ate the impact of NBTI-induced wearout. In our proposed
microarchitecture, the instructions are categorized depend-
ing on their worst-case delays into classes of critical and
non-critical instructions. Each of these classes uses its own
(specialized) functional unit(s). By that means it is possible
to increase the idle ratio of the units executing the critical
instruction, which can be used to extend lifetime of the func-
tional units by applying special mitigation techniques. Our
simulation results show that the proposed scheduling tech-
nique can achieve this goal and can yield improvements in
terms of Mean Time to Failure (MTTF) of 1.5x (for power
gating) and 2.3x (for input vector control) in average, com-
pared to the standard (i.e. balanced) scheduling.

The rest of this paper is organized as follows. In Section 2
the NBTI phenomenon is introduced followed by the presen-
tation of two special aging mitigation techniques in Section
3. Our proposed microarchitectural solution is provided in
Section 4. Afterwards we present in Section 5 the simulation
framework we use to investigate the proposed methodology.
Also the simulation results will be shown in this section.
Finally, the paper is concluded in Section 6.

2. PRELIMINARIES ON NBTI-INDUCED
AGING

NBTI occurs in PMOS transistors when the transistor is

under negative gate-source bias i.e., Vgs = −Vdd, (stress
mode). When a PMOS transistor experiences the stress
mode, some Si-H bonds break at the interface Si − SiO2

due to the presence of holes in the channel. The resulting H
diffuses away and as a result some positive traps (Si+) are
left causing the magnitude of transistor threshold voltage
Vth to increase [7]. When the stress mode is removed (re-
covery mode i.e. Vgs = 0) some of the created interface traps
are healed, and the threshold voltage shift can be partially
recovered [7]. This process is shown in Figure 2.

The long-term NBTI-induced threshold voltage shift, ΔVth,
can be modeled by the following equation [32]:

ΔVth = A(T)Y ntn, (1)

where A(T) is a technology dependent function of temper-
ature T , n is a fabrication process dependent constant, t
is the total time, and Y is the duty cycle. The duty cycle
represents the ratio between stress to total time. To calcu-
late the delay degradation of a gate due to ΔVth imposed
by NBTI, the alpha power model can be used [11]:

τ =
K

(Vgs − Vth)α
. (2)

Here K is a technology dependent factor, Vgs is the gate-
source voltage, and α represents the velocity saturation. If
ΔVth is small, by using first order Taylor expansion, the
following equation for NBTI-induced delay degradation can
be derived from Equation (2):

Δτ =
αΔVth

Vgs − Vth0
× τ0. (3)

where ΔVth is the NBTI-induced threshold voltage change,
Vth0 is the original transistor threshold voltage, and τ0 is the
pre-aging delay of the gate. By using Equations (1) and (3),
the total NBTI-induced delay degradation can be estimated
as follows:

Δτ =
A(T)αY ntnτ0

Vgs − Vth
. (4)

It should be noted that, this equation is valid for a simple
inverter, which has one transistor in each pull-up/pull-down
network. For other gates (e.g. NAND and NOR) the stack-
ing effect has to be considered as well. In stacked structures,
the delay of each gate is affected by the threshold voltage
change of all the internal transistors. Moreover, the duty

Time

Δ
V
th Stress Recovery

Figure 2: The conceptual illustration of Vth change
under stress and recovery conditions

444

cycle of each transistor depends not only on the state of
its input, but also on the state of upper and lower transis-
tors [35].

Beside NBTI also Positive Bias Temperature Instability
(PBTI) is an emerging reliability problem due to the intro-
duction of high-k gate oxides [27]. However, the impact of
PBTI on the behavior of NMOS transistors is very similar
to the NBTI effect on PMOS transistors and hence our pro-
posed technique can be used for PBTI mitigation as well.

3. SPECIAL AGING MITIGATION TECH-
NIQUES

The main goal of this work is to increase the idle ratio
of the functional units executing aging critical instruction
by applying a novel instruction scheduling policy in combi-
nation with special aging mitigation techniques. In the fol-
lowing we will introduce two approaches namely input vec-
tor control and power gating, that can be used during idle
phases of functional blocks to alleviate their NBTI-induced
wearout by increasing their relaxation phases.

3.1 Input Vector Control
Duty cycle (the time ratio which transistor is in stress

mode to the total time) has a strong impact on NBTI in-
duced wear out. Moreover, the duty cycle of each transistor
in the circuit is determined by the input vector and the state
of the gate inputs. Therefore, the input vector can affect the
NBTI-induced delay degradation and by that means Input
Vector Control (IVC) can be used during the standby mode
(when the circuit does not perform any operation) to reduce
the NBTI effect without any performance degradation.

IVC is a well known technique which has been used for
leakage power reduction in conjunction with clock gating
[23]. In this approach, the clock of a unit which does not
perform any operation is disabled, to avoid dynamic power
dissipation due to switching activity. IVC is also combined
with other techniques such as Dual Vth assignment to mini-
mize the static leakage power [36].

There is also some work to minimize the NBTI effect
by exploiting IVC techniques. In the following we briefly
present a few of them. The authors in [32] have investigated
that the input vector has a strong effect on NBTI and pro-
posed an IVC method based on random vector simulation
to mitigate the NBTI effect. IVC in conjunction with in-
ternal node control is used in [8] for minimizing the effect
of NBTI. This approach uses a concept similar to test point
insertion. A linear programming approach to find the best
NBTI-aware input vector to be applied during standby is
proposed by the authors of [15]. Furthermore, a microar-
chitectural IVC study using special No-Operations as input
vectors for an ALU is presented in [16].

NBTI-induced circuit degradation and leakage power are
both strongly dependent on the input vector but in different
directions. Two different methods are proposed in [33] to
find the best input vector resulting in the minimum NBTI-
induced wearout and/or leakage power: exhaustive search
and probability based algorithm. In the exhaustive method
the random input vectors are generated and the best input
vector resulting in the minimum NBTI-induced delay degra-
dation is chosen. In the probability based method, first a
number of input vectors are generated. Then the best set
of input vectors with the minimum wearout due to NBTI

is chosen. Based on the 0/1 probability of each input ob-
tained from the selected set, the new random inputs are
generated until a convergence is obtained. In [34], IVC is
combined with gate replacement technique using a dynamic
programming algorithm to co-optimize leakage power and
NBTI-induced degradation.

3.2 Power Gating
Power gating is another technique to mitigate NBTI [12,

13]. Since it reduces the power consumption, temperature
decreases which in turn alleviates the NBTI effect. Further-
more, the stress time of PMOS transistors is reduced and
thereby duty cycle, since a power gated PMOS transistor is
in recovery mode (Vgs = 0). However, it takes some time to
power down or up a block of a processor, whereby the time
periods depend on the size and amount of the power gate
transistors as well as the size of the power-gated block. Re-
cent work has shown, that an ALU can have a wake up time
of 3 ns to 10 ns [20, 30]. Hence, the power gated block is
not available for a certain amount of time, which can lead to
performance losses. Due to the implied performance penalty,
power gating is nowadays mainly used in multi-core proces-
sors to switch off unused cores to reduce power consumption
[21]. However, it also becomes more and more popular in
low-power embedded systems [4, 19].

4. AGING-AWARE INSTRUCTION
SCHEDULING

In this section we describe our microarchitectural approach
to mitigate the impact of NBTI using enhanced instruction
scheduling and specialized functional units.

Based on the observations described in Section 2, temper-
ature and duty cycle are two of the key aspects that influence
the NBTI effect. Hence, to slow down wearout due to NBTI,
it is mandatory to reduce temperature and duty cycle. In a
functional unit like an ALU, these two parameters strongly
depend on the sequence of executed instructions. Especially
the idle periods between two instructions can be used to mit-
igate the impact of NBTI, for example by applying power
gating or input vector control (IVC) for NOP-operations [12,
16]. However, these techniques can only be used efficiently,
if the idle periods between two instructions are very long,
which is often not the case. Our envisioned microarchitec-
tural technique aims at increasing the idle periods between
two instructions using an enhanced instruction scheduler.
By that means the benefit that can be taken from power
gating or IVC can be increased. In the following we intro-
duce our idea using an exemplary ALU. However, the idea
is also applicable to other functional units.

4.1 Instruction Classification
By investigating the delay of various paths in a functional

unit such as an ALU in detail, it is observed that differ-
ent instructions have different execution times (path delays).
Some instructions need just a small fraction of a clock cy-
cle to complete, while others need almost the entire clock
cycle. The real execution time (i.e. delay) thereby strongly
depends on the instruction and the applied operands. For
the ALU of IVM [31] synthesized using the Synopsys Design
Compiler and the SAED 90 nm library, the worst-case delay
for each instruction is depicted together with the occurrence
rate of the instructions in Figure 3.

445

0

2

4

6

8

10

12

14

16

18

0.0 0.2 0.4 0.6 0.8 1.0

O
cc
u
rr
en

ce
ra
te

in
%

Normalized delay

Non-critical
Critical

Figure 3: Worst-Case delay distribution and occur-
rence rate of ALU instructions

From timing perspective, the delay of a functional unit
is determined by its longest path delay (slowest instruction)
which is obtained from static timing analysis. Once the clock
period is set accordingly, from the performance perspective
at microarchitecture level, all instructions are considered the
same. However, due to aging effects, the delay of various
paths in the circuit increases. Finally for some instructions
the (intermediate) result will not be computed within the
given timing boundaries, i.e. one clock cycle. Thereby, the
instructions whose timing slack is very small are the first
ones that start to fail. This means that the timing critical
(TC) instructions (the ones with a real delay close to one cy-
cle) determine the lifetime of the ALU. Moreover, the critical
instructions (here it is ADDQ, i.e. add for 64 bit operands)
occur much less frequent than the non-critical instructions.
Using the performance simulator gem5 [9] we observed that
just 16 % of all instructions of various SPEC2000 bench-
marks (compiled with GCC 4.3 and -O3 -optimization) that
are executed in the ALU(s) belong to the critical category,
while 84 % are non-timing critical(NTC) instructions as de-
tailed in Table 1. Based on this observation, our key idea to
increase the lifetime of the functional units is to use dedi-
cated unit(s) for each of the two instruction classes, instead
of executing both classes in the same unit(s).

Please note that for another ALU or functional unit with
a different set of instructions and/or different implementa-

Workload Instructions NTC [%] TC [%]

applu 160,614,011 63.4 36.6
bzip2 293,455,843 80.9 19.1
equake 459,022,375 87.5 12.5
gcc 502,540,388 85.7 14.3
gzip 558,920,018 80.8 19.2
lucas 163,374,308 86.2 13.8
mcf 75,321,231 87.5 12.5
mesa 564,352,647 87.8 12.2
mgrid 80,766,502 93.5 6.5
parser 351,760,701 90.8 9.2
swim 93,599,572 66.7 33.3
twolf 365,459,289 84.8 15.2

wupwise 418,895,837 87.8 12.2
average 314,467,902 83.7 16.3

Table 1: Workloads and their instruction ratios (ex-
ecution time = 0.5 seconds)

Cut-Off Line

Delay

(ALUTC)(ALUNTC)
TC InstructionsNTC Instructions

Higher MTTF for ALUTC

Lower MTTF for ALUNTC

Lower MTTF for ALUTC

Higher MTTF for ALUNTC

In
str.1

In
str.2

In
str.m

In
str.m

+
1

In
str.n

Figure 4: Classification of instructions into TC and
NTC and its impact on MTTF

tion the timing distribution of various instructions and their
occurrence rate will change from what is shown in Figure 3,
but the overall classification will still be valid. For instance,
logic operations will have less delay than arithmetic oper-
ations (with wider word sizes and more sophisticated bit
operations). This observation, which basically tells differ-
ent instructions have different aging-criticality can be used
for aging-aware scheduling. For example, a functional unit
might be aged in a way that it can no longer be used for TC
instructions, but it still can execute NTC instructions with
no timing failures.

4.1.1 Optimal cut-off line between TC and NTC
instructions

In the following we present a general approach to find
the cut-off line to obtain the highest MTTF considering all
units. This approach works for any delay distribution of var-
ious instructions and occurrence rates. For simplicity, lets
consider that there is one functional unit for the TC instruc-
tions (ALUTC) and another one for the NTC instructions
(ALUNTC). As illustrated in Figure 4, the placement of the
cut-off line is crucial. If the cut-off line is shifted to the right,
more instructions are considered as NTC. Hence MTTF of
ALUNTC will decrease (more instructions lead to a lower idle
ratio which lowers MTTF; in addition the worst-case de-
lay increases and hence MTTF decreases). However, at the
same time MTTF of ALUTC will be improved (less instruc-
tions lead to a higher idle ratio and hence higher MTTF).
If the cut-off line is moved to the left, MTTF of ALUNTC

will increase (less instructions, lower worst-case delay), but
MTTF of ALUTC will decrease (more instructions). Hence,
finding the right placement of the cut-off line is an optimiza-
tion problem.

The algorithm, to find the optimal solution is described
in Algorithm 1. First, only the instruction with the highest
worst-case delay (instruction n) is considered as TC instruc-
tion (Step 1). Then, simulations are processed and MTTF
of ALUNTC and ALUTC is evaluated (Step 2). Afterwards,
the set of TC instructions is expanded by instruction n− 1
(Step 5) and again MTTF of both units is evaluated (Step
6). This process is continued until the highest MTTF con-
sidering both units is found. In our cases the algorithm
yielded the result depicted in Figure 3.

4.2 Delay-Aware Scheduling
Normally the information about the instruction delay is

not used by the instruction scheduler (or the unit which de-

446

Algorithm 1 Finding the optimal cut-off line between NTC
and TC instructions

// List all instructions according to their worst-case delay,
// i.e. delayInstruction 1 ≤ · · · ≤ delayInstruction n

1. TC = {Instruction n}
2. Run simulations with this setting and extract:

MTTF0 = min(MTTFALUTC ,MTTFALUNTC)
3. i = 0
Do

4. i = i+ 1
5. TC = TC ∪{Instruction n− i}
6. Run simulations with this setting and extract:

MTTFi = min(MTTFALUTC ,MTTFALUNTC)
While (MTTFi > MTTFi−1)

cides which functional unit will be used). Instead, if two
ALUs are available, the scheduler will balance the work-
load, so that both ALUs will execute roughly 50% of all
the instructions, which is mainly due to performance rea-
sons. Also some previous work on aging-aware instruction
scheduling [28], that considers the delay of all instructions
to be the same (i.e. 1 clock cycle), shows that the balanced
technique is better than unbalanced ones in terms of MTTF.
However, as we discussed before, if the accurate timing of
instructions is taken into account, a balanced scheduling is
not the best choice from the aging perspective. Hence, in
our proposed microarchitecture each instruction class has its
own dedicated ALU, i.e. one ALU just for the TC instruc-
tions and one ALU just for the NTC ones, although this can
lead to an unbalanced load among the two ALUs.

The scheduler (or the unit which decides which functional
unit will be used) selects the unit, which corresponds to the
actual instruction based on the instruction opcode. Hence,
no extra bits to encode the classification are necessary. For
example in our evaluated scenario the critical ADDQ in-
struction has the opcode 1020h. Whenever this opcode is
detected, the corresponding instruction (ADDQ) is sent to
the corresponding ALU, while all other instruction will be
sent to the other ALU. However, due to this additional clas-
sification of instructions (TC ALU instructions, NTC ALU
instructions) a small hardware overhead comes along with
our proposed technique. Using this approach the first ALU
executes only 16 % of all the instructions, while the other
ALU handles the other 84 %. This means, that the first
ALU, which deals with the critical instructions, is idle most
of the time, which is also shown in Figure 5. Hence, this
unit can be power gated very efficiently and also IVC can
be applied most of the time. Please note that the “critical
ALU” is the one which determines the lifetime, since the
non-critical instructions have a delay which is much smaller
than the delay of the critical instructions and even with ag-
ing included never surpasses the delay of the critical ones,
before these will start to fail.

Of course, this unbalanced load can lead to a performance
loss compared to an architecture with two “full” functional
units of the same type. However, the performance loss is rel-
atively small, as we will explain in the next section. More-
over, the functional units in the first case can be more spe-
cialized, hence they can be smaller. By this means die size
and manufacturing costs can by saved. Furthermore, smaller
units will consume less power and by that means stay cooler.
This again will help to slow down wearout.

Balanced Scheduling
Instruction Stream

Aging-Aware Scheduling
Instruction Stream

ADDL (NTC)

BIS (NTC)

S4ADDQ (NTC)

S8ADDQ (NTC)

CMPLE (NTC)

SLL (NTC)

ADDQ (TC)

SRL (NTC)

SRL (NTC)

ADDQ (TC)

ADDL
-

S4ADDQ
-

CMPLE
-

ADDQ
-

SRL
-

Unit 0

-
BIS
-

S8ADDQ
-

SLL
-

SRL
-

ADDQ

Unit 1

ADDL (NTC)

BIS (NTC)

S4ADDQ (NTC)

S8ADDQ (NTC)

CMPLE (NTC)

SLL (NTC)

ADDQ (TC)

SRL (NTC)

SRL (NTC)

ADDQ (TC)

-
-
-
-
-
-

ADDQ
-
-

ADDQ

Unit 0

ADDL
BIS

S4ADDQ
S8ADDQ
CMPLE
SLL
-

SRL
SRL
-

Unit 1

Figure 5: Assignment of instructions to functional
units for balanced and aging-aware scheduling

In our case, the specialized critical-ALU needs just to sup-
port the ADDQ-instruction (ADD instruction for three 64
bit operands a+b = c). Hence, the feature set can be heavily
reduced for this specialized ALU, resulting in a very small
size. Using Synopsys Design Compiler and the SAED 90
nm library we found out that the size for such a specialized
ALU is just 8 % of a normal, general purpose ALU. This
means that using one specialzed ALU together with a nor-
mal ALU (aging-ware) results in only 54 % of the size of two
normal ALUs (balanced) as it is shown in Table 2. Further-
more, we also investigated the power consumption of these
two configurations using Synopys PrimeTime. For this pur-
pose we extracted the instruction sequences for each ALU
using the simulation framework detailed in Section 5 and
various SPEC2000 workloads. With ModelSim the switch-
ing activity behavior for each benchmark and each ALU was
extracted and afterwards PrimeTime was used to calculate
the power consumption of each ALU for each application.
Using the specialized ALU in our proposed microarchitec-
ture, the power consumption of the two ALUs (critical +

Scheduling
normal special Area Avg. Power
ALU(s) ALU(s) [um2] [uW]

Balanced 2x 0
91790 296

(100 %) (100 %)

Aging-Aware
1x 1x 49546 160

(NTC) (TC) (54 %) (54 %)
Aging-Aware 2x 1x 95441 307
(Enhanced) (NTC) (TC) (104 %) (104 %)

Table 2: Different scheduling techniques and combi-
nations of ALUs (normal once and specialized once
for TC instructions)

447

non-critical) can be reduced to 54 % (extracted with Syn-
opsys PrimeTime using real switching activity values) for
all executed SPEC200 benchmarks (see Table 2). Due to
the performance loss, the small size and the low power con-
sumption of the specialized ALU, another option beside us-
ing one critical and one non-critical ALU is to feature two
non-critical ALUs and one critical. This will eliminate the
performance penalty, as we will show later and the area as
well as power overhead is negligible compared to the entire
embedded processor.

If an embedded processor uses only one ALU, our pro-
posed technique leads to a small area and power overhead,
since a second ALU has to be implemented. However, due
to its small size and power consumption both overheads are
very minimal. In addition, lifetime will be greatly improved
(see Section 5).

4.3 Further Extensions
Beside for a simple ALU, the proposed scheduling tech-

nique is also applicable to much more sophisticated func-
tional units such as floating point units or vector execution
units. Also these units will feature some instructions (typi-
cally multi-cycle instructions) that have a slack close to zero
in one of their execution cycles.

Moreover, the concept can be also extended to handle pro-
cess variation as well. If two functional units of the same
type are available, one can be faster than the other one due
to process variation, i.e. the timing slack of an instruction
executed in the faster unit is larger than in the slower unit.
In that case, the TC instructions should be scheduled to the
faster unit, while the NTC instructions should use the slower
unit.

5. EXPERIMENTAL RESULTS

5.1 Simulation Setup
To validate our microarchitectural approach and to inves-

tigate the advantages as well as disadvantages, we used our
microarchitectural framework ExtraTime [25]. It is based on
the cycle-accurate microarchitectural performance simulator
gem5 [9] and includes models for power (based on McPAT
[22]), temperature (based on HotSpot [18]) and aging, so
that these parameters can be observed during the execution
of typical applications. The temperature information in con-
junction with information about the usage/activity of differ-
ent microarchitectural blocks is used by our microarchitec-
tural aging model for NBTI. This is based on the transistor-
level model explained in Section 2. For each microarchi-

Processor
Single-core @ 3 GHz,
out-of-order, 4-issue

L1-Cache 64 KByte, 3 cyc latency
L2-Cache 2 MByte, 15 cyc latency

Execution Units 2x ALU, 2x CALU, 2x FPU

Expected wearout
Δreld = 10 % in 3 years,

i.e MTTF = 3 years (90 ◦C)

Conditions
Tstart =57 ◦C,

Vdd = 1.0 V, Vth = 0.21 V

SPEC2000 benchmarks
applu, bzip2, equake, gcc, gzip,
lucas, mcf, mesa, mgrid, parser,

swim, twolf, wupwise
Runtime 0.5 seconds excluding initialization

Table 3: Configuration details for the experiments

tectural block (e.g. ALU, instruction decoder, etc.) it is
assumed that all transistors behave similarly (i.e. have the
same temperature, aging rates, etc.). Hence, a represen-
tative transistor can be chosen, for which the current and
future Vth shift is estimated. Based on that the delay in-
crease using an alpha power law can be calculated and so
the current and future delay change of the entire block can
be determined. We have validated this representative tran-
sistor model with accurate circuit-level implementation and
the results show a high accuracy (< 3 % difference).

Details on the processor configuration modeled and the
simulated workloads (SPEC2000 benchmarks) can be found
in Table 3. As functional unit we have again chosen the
ALU detailed in the previous section.

As said before, our proposed scheduling technique aims
at increasing the idle ratio of the ALU executing the TC
instructions. By that means it is possible to increase the
Mean Time To Failure (MTTF) of these functional units
by exploiting NBTI mitigation techniques. Please note that
it is always the ALU executing the TC instructions, which
will fail first. Hence this unit is mainly responsible for the
achieved MTTF values. Moreover, it is worth to note that
usually the execution stage is the pipeline stage with the
smallest timing slack, i.e. highest delay. This means that a
lifetime extension of the functional units which are part of
the execution stage is crucial, if lifetime of the entire micro-
processor should increase. The aging mitigation techniques
for the functional units we used in this paper are input vector
control and power gating. The details for both are provided
in the following subsections.

5.1.1 Applied Input Vector Control Technique
Usually input vector control (IVC) is used at gate-level to

mitigate the influence of NBTI and/or leakage (see Section
3). However, IVC can be also used at microarchitecture-
level. At that level, input vectors are applied at the primary
inputs of the entire microarchitectural blocks, such as func-
tional units. For an ALU, the input vector consists of an
instruction opcode and two instruction operands. Since, the
NBTI-minimizing input vector should not affect the pro-
gram execution running on the processor, it has to be a
No-Operation (NOP) [17]. In the selected superscalar out-
of-order processor the NBTI-minimizing input vector can be
applied at the ALU inputs every cycle the ALU is idle, i.e.
not executing an instruction. Since it takes some time, un-
til all internal gates of the functional unit are in the state
resulting in the minimal NBTI-induced wearout, the first cy-
cle in every idle period is considered as a normal operational
cycle with higher degradation rate.

To identify the aging rates of the ALU, when the NBTI-
minimizing input vector is applied, we did the following:
First, the gate-level description of the IVM processor [31]
(similar to the core modeled in gem5) is extracted using
Synopsys Design Compiler and the SAED 90 nm library. In
the same step, all critical paths of the functional units are
extracted as well. Afterwards, the signal probabilities (prob-
ability of a signal being 1) of all internal nodes are obtained
with Modelsim. Using these signal probabilities the duty
cycle of all transistors inside the ALU can be derived and
by that means the aging rate of these transistors (Equation
4). Then, a linear programming solver is used to extract
the input vector resulting in the minimum NBTI-induced
degradation similar to [16]. Finally, the wearout rate for

448

Balanced Aging-Aware
2x normal ALU 1x TC ALU, 1x or 2x NTC ALU

power gating input vector power gating input vector
applu 4.5 5 8.5 11
bzip 5 5.5 5 13

equake 5 5 7 10.5
gcc 4 5.5 6.5 14
gzip 4.5 4.5 4.5 13
lucas 4.5 5.5 4.5 12.5
mcf 5 5 8 10
mesa 5 5 5.5 9
mgrid 4.5 5 13 8.5
parser 4 5.5 8 14.5
swim 5 4.5 6 11
twolf 4.5 5.5 7.5 14

wupwise 4 5 4.5 12.5
Average 4.6 (+1.5x) 5.1 (+1.7x) 7 (+2.3x) 11.8 (+3.9x)

Table 4: MTTF in years for several SPEC2000 benchmarks (with power gating or input vector control)

this NBTI-minimizing input vector is calculated and used
in our microarchitectural aging model for the representative
transistor. For the normal ALU of IVM our extracted input
vector resulting in the minimum NBTI-induced degradation
leads to a relative delay increase of 6.25 % in 3 years. This
means, that the duty cycle of our representative transistor
in case this special input vector is applied (i.e. in idle cy-
cles) is just 0.15 (see Equation 4). In non-idle cycles, i.e. in
cycles the ALU is executing “normal” operations, the duty
cycle of the representative transistor estimates the average
duty cycle of the transistors in the critical paths [25].

5.1.2 Applied Power Gating Technique
The chosen power gating technique is relatively simple.

After an idle period of at least 200 cycles a functional unit
can be power gated. The following power down time until
the ALU is completely power gated is set to 3 ns [20, 30].
Until no new instruction is incoming, the unit then remains
power gated. When a new incoming instruction is detected,
the unit is woken up. The wake up time is set to 7 ns [20,
30] and afterwards it can execute the new instruction(s).
In our microarchitectural simulations only in the period, in
which the unit is completely power gated, the duty cycle
of all transistors in this block is considered as 0. In the
other cycles the duty cycle of the representative transistors
estimates the average duty cycle of the transistors in the
critical paths [25].

5.2 Results
As said before, our proposed scheduling technique aims

at increasing the idle ratio of the ALU executing the TC
instructions. By that means it is possible to increase the
Mean Time To Failure (MTTF) of these functional units by
exploiting NBTI mitigation techniques such as power gat-
ing or input vector control. Since the units executing the
TC instructions, are the ones that will fail first, these func-
tional units also determine the lifetime of the entire proces-
sor. The corresponding MTTF and performance results for
these techniques can be found in Table 4 and Table 5.

The previously introduced power gating scheme can greatly
improve MTTF. Using power gating in combination with the
aging-aware scheduling, MTTF can be increased to 7 years
in average as shown in Table 4. Since the standard schedul-
ing policy yields only 4.6 years, this translates into a benefit
of 52 % of the aging-aware scheduling over the standard pol-
icy. However, in some cases, both approaches deliver compa-
rable results. This is due to the fact. that a unit cannot be
power gated in every idle period. Compared to the situation
without power gating, in which MTTF is just 3 years, the
improvements are even better and underline the efficiency
of our proposed scheduling technique.

Beside power gating, also input vector control (IVC) can
be very helpful to mitigate NBTI-induced aging as explained
before (see Table 4). If this special input vector is applied at
the primary inputs of the investigated ALU in all idle cycles

Balanced Aging-Aware Aging-Aware (Enhanced)
2x normal ALU 1x TC ALU, 1x NTC ALU 1x TC ALU, 2x NTC ALU

w/o power gating w/ power gating w/o power gating w/ power gating w/o power gating w/ power gating
applu 0.93 0.93 0.93 0.92 0.93 0.92
bzip2 0.78 0.77 0.74 0.73 0.77 0.76
equake 0.74 0.74 0.74 0.73 0.74 0.74
gcc 0.83 0.83 0.80 0.79 0.83 0.82
gzip 1.25 1.25 1.20 1.20 1.26 1.25
lucas 0.72 0.72 0.71 0.71 0.72 0.72
mcf 0.24 0.24 0.24 0.24 0.24 0.24
mesa 1.18 1.18 1.15 1.15 1.18 1.17
mgrid 0.67 0.67 0.67 0.67 0.67 0.67
parser 0.70 0.70 0.68 0.67 0.70 0.68
swim 0.22 0.22 0.22 0.22 0.22 0.22
twolf 0.68 0.68 0.67 0.65 0.68 0.66

wupwise 1.05 1.05 1.02 0.99 1.05 1.03
Average 0.77 (100 %) 0.77 (100 %) 0.75 (97 %) 0.74 (96 %) 0.77 (100 %) 0.76 (99 %)

Table 5: Performance (IPC) evaluation of different scheduling techniques

449

MTTF can be extended to 12 years using the aging-aware
scheduling. This is an improvement of almost 4x compared
to the case without IVC and still 2.3x compared to the stan-
dard scheduling policy with IVC.

In addition, the performance penalty of the proposed sche-
duling technique is almost negligible. As it is illustrated in
Table 5, the average performance loss of the aging-aware
instruction scheduling using a (non)-critical classification is
4 % in average and at most 5 %. In case the performance
impact is not acceptable, we suggest to use two normal
ALUs, which handle the NTC instructions according to a
balanced workload distribution and add a third specialized
ALU, which deals only with the TC instructions. Since the
specialized ALU is very small (see Section 4.2), the addi-
tional overhead is negligible and hence the additional man-
ufacturing costs. In addition, this approach does not just
incur any performance overhead compared to the standard
technique, but it can also further reduce the aging rates in
the “normal” ALUs, due to a lower load (i.e. more idle cy-
cles). Please note that the performance results for IVC are
not presented in Table 4, since IVC has no impact on per-
formance. Hence, performance with IVC is the same as the
performance without power gating.

Now, the important question is whether the applied ap-
proach can improve the lifetime of the entire microproces-
sor. In other words, the key question is whether the lifetime
of the entire microprocessor is determined by the lifetime
the functional unit due to time criticality of the execution
unit compared to the other stages. To answer this question,
we synthesized various processor cores using the SAED 90
nm library and Synopsys Design Compiler. For IVM [31]
and FabScalar [14] (both superscalar, out-of-order) as well
as OpenRisc 1200 [2] and miniMIPS [1] (both in-order), we
investigated the delay of each pipeline stage. The results
confirm that the execution stage always contains the longest
paths, i.e. has the highest delay. That means the wearout of
the functional units has to be addressed in order to extend
the lifetime of the entire microprocessor. Hence, our pro-
posed technique which extends the lifetime of the functional
units can help to increase the MTTF of the entire processor
as well.

6. CONCLUSION
Embedded microprocessors at nanoscale are exposed to

various reliability issues, which include a more rapid aging
of all components. This will eventually reduce the Mean
Time to Failure (MTTF), a crucial point for embedded sys-
tems that have often very tight reliability constraints (e.g.
long mission times). To alleviate the impact of transistor
aging due to Negative Bias Temperature Instability (NBTI)
we proposed a new delay-aware scheduling methodology in
this paper. Instructions are categorized dependent on their
timing slacks within clock cycle boundaries and then sched-
uled to separate functional units. In combination with spe-
cialized functional units and efficient mitigation techniques
MTTF can be extended in average by 1.5x using power gat-
ing and 2.3x using input vector control compared to the
standard (i.e. balanced) scheduling approach. At the same
time performance is not compromised.

7. REFERENCES
[1] miniMIPS. Opencores:

http://opencores.org/project,minimips. [Online;
accessed July 2012].

[2] OpenRisc 1200. Opencores:
http://opencores.org/project,or1200_hp. [Online;
accessed July 2012].

[3] J. Abella, X. Vera, and A. Gonzalez. Penelope: The
NBTI-Aware Processor. In Proc. of the Int’l Symp. on
Microarchitecture, pp. 85–96, Dec. 2007.

[4] ARM Limited. Cortex-A8 Technical Reference
Manual, 2010.

[5] M. Basoglu, M. Orshansky, and M. Erez. NBTI-Aware
DVFS: A New Approach to Saving Energy and
Increasing Processor Lifetime. In Proc. of the Int’l
Symp. on Low Power Electronics and Design, pp.
253–258, Aug. 2010.

[6] K. Bernstein, D. J. Frank, A. E. Gattiker,
W. Haensch, B. L. Ji, S. R. Nassif, E. J. Nowak, D. J.
Pearson, and N. J. Rohrer. High-performance CMOS
variability in the 65-nm regime and beyond. IBM
Journal of Research and Development - Advanced
silicon technology, 50, pp. 433–449, July 2006.

[7] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and
S. Vrudhula. Predictive modeling of the NBTI effect
for reliable design. In Proc. Custom Integrated Circuits
Conf., pp. 189–192, 2006.

[8] D. Bild, G. Bok, and R. Dick. Minimization of NBTI
performance degradation using internal node control.
In Proc. of the Conf. on Design, Automation and Test
in Europe, pp. 148–153, Mar. 2009.

[9] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim,
A. G. Saidi, and S. K. Reinhardt. The M5 Simulator:
Modeling Networked Systems. IEEE Micro, 26(4), pp.
52–60, July 2006.

[10] S. Borkar. Designing Reliable Systems from Unreliable
Components: The Challenges of Transistor Variability
and Degradation. IEEE Micro, 25(6), pp. 10–16, Nov.
2005.

[11] K. A. Bowman, B. L. Austin, J. C. Eble, X. Tang, and
J. D. Meindl. A Physical Alpha-Power Law MOSFET
Model. In Proc. of the Int’l Symp. on Low Power
Electronics and Design, pp. 218–222, Aug. 1999.

[12] A. Calimera, E. Macii, and M. Poncino. NBTI-Aware
Power Gating for Concurrent Leakage and Aging
Optimization. In Proc. of the Int’l Symp. on Low
Power Electronics and Design, pp. 127–132, Aug.
2009.

[13] T. Chan, J. Sartori, P. Gupta, and R. Kumar. On the
Efficacy of NBTI Mitigation Techniques. In Proc. of
the Conf. on Design, Automation and Test in Europe,
pp. 1–6, Mar. 2011.

[14] N. Choudhary, S. Wadhavkar, T. Shah, H. Mayukh,
J. Gandhi, B. Dwiel, S. Navada, H. Najaf-abadi, and
E. Rotenberg. FabScalar: Automating Superscalar
Core Design. IEEE Micro, 32(3), pp. 48–59, May 2012.

[15] F. Firouzi, S. Kiamehr, and M. B. Tahoori. A Linear
Programming Approach for Minimum NBTI Vector
Selection. In Proc. of the Great Lakes Symp. on VLSI,
pp. 253–258, May 2011.

[16] F. Firouzi, S. Kiamehr, and M. B. Tahoori. NBTI
Mitigation by NOP Assignment and Insertion. In

450

Proc. of the Conf. on Design, Automation and Test in
Europe, pp. 218–223, Mar. 2012.

[17] J. L. Hennessy, D. A. Patterson, and D. Goldberg.
Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, 2003.

[18] W. Huang, S. Ghosh, S. Velusamy,
K. Sankaranarayanan, K. Skadron, and M. R. Stan.
HotSpot: A Compact Thermal Modeling Methodology
for Early-Stage VLSI Design. Trans. on Very Large
Scale Integration Systems, 14(5), pp. 501–513, May
2006.

[19] R. Islam, A. Sabbavarapu, and R. Patel. Power
Reduction Schemes in Next Generation Intel ATOM
Processor Based SoC for Handheld Applications. In
Symp. on VLSI Circuits, pp. 173–174, June 2010.

[20] S. Kim, S. V. Kosonocky, and D. R. Knebel.
Understanding and Minimizing Ground Bounce
During Mode Transition of Power Gating Structure.
In Proc. of the Int’l Symp. on Low Power Electronics
and Design, pp. 22–25, Aug. 2003.

[21] R. Kumar and G. Hinton. A Family of 45nm IA
Processors. In Proc. of the IEEE Int’l Solid-State
Circuits Conf., pp. 58 –59, Feb. 2009.

[22] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. McPAT: An Integrated
Power, Area, and Timing Modeling Framework for
Multicore and Manycore Architectures. In Proc. of the
Int’l Symp. on Microarchitecture, pp. 469–480, Dec.
2009.

[23] S. Naidu and E. Jacobs. Minimizing Stand-by Leakage
Power in Static CMOS Circuits. In Proc. of the Conf.
on Design, Automation and Test in Europe, pp.
370–376, Mar. 2001.

[24] V. Narayanan and Y. Xie. Reliability Concerns in
Embedded System Designs. Computer, 39(1), pp.
118–120, Jan. 2006.

[25] F. Oboril and M. B. Tahoori. ExtraTime: Modeling
and Analysis of Wearout due to Transistor Aging at
Microarchitecture-Level. In Proc. of the Int’l Conf. on
Dependable Systems and Networks, June 2012.

[26] F. Oboril and M. B. Tahoori. Reducing Wearout in
Embedded Processors using Proactive Fine-Grained
Dynamic Runtime Adaptation. In Proc. of the
European Test Symp., pp. 68–73, May 2012.

[27] S. Pae, M. Agostinelli, M. Brazier, R. Chau,
G. Dewey, T. Ghani, M. Hattendorf, J. Hicks,
J. Kavalieros, K. Kuhn, M. Kuhn, J. Maiz, M. Metz,

K. Mistry, C. Prasad, S. Ramey, A. Roskowski,
J. Sandford, C. Thomas, J. Thomas, C. Wiegand, and
J. Wiedemer. BTI Reliability of 45 nm High-K +
Metal-Gate Process Technology. In Int’l Reliability
Physics Symp., pp. 352–357, May 2008.

[28] T. Siddiqua and S. Gurumurthi. A Multi-Level
Approach to Reduce the Impact of NBTI on Processor
Functional Units. In Proc. of the Great Lakes Symp.
on VLSI, pp. 67–72, May 2010.

[29] A. Tiwari and J. Torrellas. Facelift: Hiding and
slowing down aging in multicores. In Proc. of the Int’l
Symp. on Microarchitecture, pp. 129–140, Nov. 2008.

[30] K. Usami, T. Shirai, T. Hashida, H. Masuda,
S. Takeda, M. Nakata, N. Seki, H. Amano, M. Namiki,
M. Imai, M. Kondo, and H. Nakamura. Design and
Implementation of Fine-Grain Power Gating with
Ground Bounce Suppression. In Int’l Conf. on VLSI
Design, pp. 381–386, Jan. 2009.

[31] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. patel.
Characterizing the Effects of Transient Faults on a
High-Performance Processor Pipeline. In Proc. of the
Int’l Conf. on Dependable Systems and Networks, pp.
61–71, June 2004.

[32] W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu,
and Y. Cao. The Impact of NBTI Effect on
Combinational Circuit: Modeling, Simulation, and
Analysis. IEEE Trans. on Very Large Scale
Integration Systems, 18(2), pp. 173–183, Feb. 2010.

[33] Y. Wang, X. Chen, W. Wang, V. Balakrishnan,
Y. Cao, Y. Xie, and H. Yang. On the efficiancy of
Input Vector Control to mitigate NBTI effects and
leakage power. In Proc. of the Int’l Symp. on Quality
of Electronic Design, pp. 19–26, Mar. 2009.

[34] Y. Wang, X. Chen, W. Wang, Y. Cao, Y. Xie, and
H. Yang. Leakage Power and Circuit Aging
Cooptimization by Gate Replacement Techniques.
IEEE Trans. on Very Large Scale Integration Systems,
(99), pp. 1–14, 2011.

[35] K. Wu and D. Marculescu. Joint Logic Restructuring
and Pin Reordering against NBTI-induced
Performance Degradation. In Proc. of the Conf. on
Design, Automation and Test in Europe, pp. 75–80,
Mar. 2009.

[36] L. Yuan and G. Qu. Simultaneous Input Vector
Selection and Dual Threshold Voltage Assignment for
Static Leakage Minimization. In Proc. of the Int’l
Conf. on Computer-Aided Design, pp. 548–551, 2007.

451

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

