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Abstract—As hardware devices like processor cores and
memory sub-systems based on nano-scale technology nodes
become more unreliable, the need for fault tolerant numerical
computing engines, as used in many critical applications with
long computation/mission times, is becoming pronounced. In
this paper, we present an Algorithm-based Fault Tolerance
(ABFT) scheme for an iterative linear solver engine based on
the Conjugated Gradient method (CG) by taking the advantage
of numerical defect correction. This method is “pay as you go”,
meaning that there is practically only a runtime overhead if
errors occur and a correction is performed. Our experimental
comparison with software-based Triple Modular Redundancy
(TMR) clearly shows the runtime benefit of the proposed
approach, good fault tolerance and no occurrence of silent
data corruption.

Keywords-algorithm-based fault tolerance, defect correction,
conjugated gradient, triple modular redundancy, checkpointing

I. INTRODUCTION

Nowadays, everyone expects that the computation result

of a microprocessor is correct as long as the program, which

is executed is correct. However, this attitude is wrong and

can be fatal. Even if the underlying hardware is fault free

and working in its specified parameter range, malfunctions

can still happen. These are induced by transient or intermit-

tent errors (so-called Soft Errors) due to cosmic radiation,

temperature, signal noises as well as imperfect design. The

susceptibility of memories or microprocessors to such errors

is thereby increasing with shrinking CMOS feature sizes [1].

The failures can manifest themselves in bit flips in mem-

ory or during computation. Thereby, a recent study, that

investigated the error rate in the main memory of servers

discovered a much higher error rate than expected. Thereby,

up to 10 bit flips per day for each memory module were

detected [2]. Hence, modern servers use ECC-protected

memory [3] to detect and correct single bit upsets and by

this means increase the reliability. However, not only the

main memory is susceptible to errors but also the micro-

processors including their caches, registers and execution

units. While some microprocessors also use ECC protection

for some caches [4], the execution units and registers are

more or less unprotected. In fact, research has also developed

solutions for these domains to increase their fault tolerance

(e.g. hardware-based Triple Modular Redundancy (TMR))

[5]), but these are still far away from an adoption in

mass production. Hence, it is extremely important that also

software developers are aware of the problem of unreliable

hardware and adjust their programs accordingly to ensure

correct results even if the computation is not fault free.

This is particularly important in the field of numerical

methods and scientific computing, which includes the do-

main of Computational Fluid Dynamics (CFD) simulations,

that are for instance used to calculate the air flow around cars

or to forecast the weather. Due to the high complexity of the

modeled problems the amount of processed data is extremely

large and simulation runtime can easily exceed several days.

Hence, the modeled problems in this field put extremely high

demands on computing power as well as memory capacity.

Furthermore, in order to ensure correct calculation through

out the entire runtime, also the reliability requirements are

very high. However, due to the performance demands in

this field, always the latest hardware technologies are used,

which are more susceptible to various failures such as Soft

Errors. Hence, it is very important to not only optimize the

software algorithms for a faster runtime, but also for a higher

reliability in order to ensure correct results, even if some

errors occur during the calculation.

Researchers have already proposed some Algorithm-based
Fault Tolerance (ABFT) techniques to overcome the prob-

lem of unreliable hardware by means of software/algorithm

level techniques as discussed in detail in Section II. Roughly

speaking, most of the work focuses thereby on basic kernels

like matrix-matrix or matrix-vector multiplications and tries

to detect errors by adding special checksum techniques.

However, such techniques are often not applicable to real

world problems due to their calculation or data overhead.

Real world problems modeled by linear partial differential

equations are typically transformed into a linear system of

equations Ax = b. The problem solution x is then calculated
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with the help of software algorithms, called solvers. Many

(iterative) solvers have intrinsic smoothing properties, that

can correct errors without any assistance by (external) error

detection and correction schemes, so that there is no need to

make every operation step fault tolerant. Hence, to keep the

overhead, to ensure reliable operation, as low as possible,

the entire solver as one holistic entity has to be taken into

account.

For this reason, we present an approach that uses the

numerical defect correction method [6], [7] extended by

dynamic checkpointing, which can correct errors (also named

defects) independent of any (external) error detection and

correction scheme. The defect correction method is an

iterative solving algorithm for a system of linear equations

Ax = b, that converts the original problem into a defect

problem Ad = r := b − Ax, which is then solved by

another method (inner solver). As inner solver we use in

this work the Conjugated Gradient method (CG), due to

its favorable convergence properties. The great advantage of

this approach over others is, that it combines the intrinsic

error correction properties of the defect correction method

with the fast convergence of CG, which as a standalone

solver is very vulnerable towards errors (it possibly calcu-

lates wrong solution, or does not converge at all). Hence, the

result is a very fast solver with a high fault tolerance, that

can implicitly correct errors without the need of any explicit

error detection technique.

The results of our fault injection experiments clearly

show that our defect correction approach with dynamic

checkpointing can ensure a correct solution even for a

1000 times higher fault rate than the standalone CG solver.

Thereby, the runtime overhead for low fault rates is negli-

gible. Hence, this approach is much better suited than a CG

solver extended with software-based TMR, that has a higher

runtime overhead for low fault rates.

The rest of the work is organized as follows. In Sec-

tion II some related work is presented. Our model problem

is introduced in Section III and the Conjugated Gradient

method is explained in the following Section IV. Afterwards,

our methodologies including the numerical defect correction

method and the dynamic checkpointing approach to achieve

fault tolerance are introduced in Section V. Finally, the

empirical results for these techniques can be found in

Section VI, before we conclude with Section VII

II. RELATED WORK

Algorithm-based Fault Tolerance (ABFT) techniques have

been proposed as a means of low-cost error protection in nu-

merical computations by incorporating error protection in the

data representation as well as in the algorithm at the software

level. With the prevalence of many- and multi-processor

systems (such as multi-core, multi-socket, computer clusters,

etc.), researchers have taken benefit of excessive (and at

that time mostly unused) computation power to hide the

performance overhead associated with ABFT.

Checkpointing is one fault tolerance scheme that can be

combined with ABFT, in which all process states of the

application are saved into a stable storage periodically [8].

In case an error occurs during calculation, the actual state

is thrown away and instead the last backup is used. Such

techniques have been further improved to deal with many-

processor systems in which the failure of one processor

may result in unnecessary restarts of other processors [9].

Checkpointing techniques in massive parallel systems have

also been investigated [10]. However, saving checkpoints

still means a high storage overhead and can only indirectly

correct errors but cannot detect them, so that additional

techniques for error detection are necessary. Moreover, in

applications that are memory bandwidth bound, as it often

happens in the field of numerical simulation and scientific

computing, checkpointing can dramatically increase the ap-

plication runtime. In order to minimize the overhead associ-

ated with checkpointing, an algorithm-based checkpoint-free

fault tolerance method for parallel matrix computations has

been presented in [9].

To detect errors during calculation Result Checking (RC)

can be used. Thereby, the results are checked without knowl-

edge of the particular algorithm used to calculate them. An

RC for matrix-matrix multiplication C = AB with input

matrices A and B works based on the observation, that

the product of C with a random vector r is equal to the

product of matrix A with vector Br, if no error occurs,

i.e. Cr =?A(Br) [11]. However, also RC can only detect

but not correct errors.

Another ABFT error detection method is a checksum
scheme for matrix operations, which was introduced in [12].

The input matrices are augmented with an additional check-

sum row and an additional checksum column. Each element

of the checksum column/row is the sum of the elements

of the original matrix that are in the same column/row. The

augmented matrices are then multiplied using an unmodified

multiplication algorithm – in the end, the additional row and

column of the result matrix should still be the sum of the

elements of the same row or column. If that is not the case,

an error occurred. A linear algebraic model for checksum-

based ABFT has been developed in [13]. ABFT for matrix

inversion with maximum pivoting using checksum methods

was proposed in [14]. A series of row and column operations

were defined in this work which satisfy the checksum

property. ABFT for floating point matrix operations using

backward error assertions has been presented [15]. The use

of the floating-point arithmetic coding approach to build

fault survivable high performance computing applications

has been explored in [16].

In [17] a recovery mechanism is proposed for software

using several processes running in parallel. However, ad-

ditional error detection schemes are necessary to detect
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errors before the recovery mechanism can correct them.

Furthermore, the presented methodology only works, if there

is a known close relation E between the different states of

the processes, i.e. E = Sp1 + Sp2 + · · · + Spn , since the

recovery scheme is based on this relationship.

ABFT techniques have also benefited from many-

processor systems to hide the overhead in high performance

numerical systems [18]–[21].

An ABFT approach for iterative solvers for partial dif-

ferential equations has been presented in [22]. The used

technique is based on checksums, that are added to a red-

black successive over-relaxation (RB-SOR) solver. However,

this approach does not take any advantage out of the intrinsic

error correcting properties of this solver. In addition RB-

SOR is very inefficient in terms of convergence speed, which

makes it uninteresting for many real world problems.

In summary, all existing ABFT techniques for matrix op-

erations are somehow based on adding checksum rows and

columns, and performing extra computations for computing

and checking them. This requires additional memory and

runtime overhead even if no error occurs. In contrast, our

proposed approach does not add any memory overhead, in

the form of checksums, to the matrices and vectors, and

takes advantage of inherent numerical defect correction to

achieve fault tolerance. Therefore, almost no computation

overhead is incurred when there are no errors. Moreover, our

approach can correct errors without any explicit detection

scheme, which makes it very efficient.

III. MODEL PROBLEM

For the sake of simplicity the model problem under

consideration in this work is a two-dimensional Poisson

problem −Δu = f for an unknown function u in the 2D

unit square with homogeneous Dirichlet boundary conditions

and a given right hand side f [23]. A typical discretization

by means of finite difference or finite element methods on

equidistant grids with grid size h = 1/(n + 1) for a large

integer n results in a linear system of equations (LSE)

Au = b, where A is a matrix of size n2-by-n2 and the

vector b with length N := n2 represents the discrete values

of the right hand side. This system is characterized by the

classical 5-point Laplacian matrix shown in Equation 1.

A =

⎛
⎜⎜⎜⎜⎜⎝

B −I
−I B −I

. . .
. . .

. . .

−I B −I
−I B

⎞
⎟⎟⎟⎟⎟⎠ ∈ Rn2×n2

, (1)

with B =

⎛
⎜⎜⎜⎜⎜⎝

4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4

⎞
⎟⎟⎟⎟⎟⎠ ∈ Rn×n, and the

identity matrix I ∈ Rn×n.

Beside this particular model problem our proposed fault

tolerant solver can handle many other and much more

complex problems as well. The only prerequisite is that the

discretization of the problem results in a symmetric matrix

A. This is due to the requirements of the applied Conju-

gated Gradient method, that is introduced in the following

Section IV.

IV. CONJUGATED GRADIENT METHOD

A. Basics

One of the most powerful methods for solving symmetric

and positive definite linear systems Ax = b is the Con-

jugated Gradient method (CG) [24]. There are two main

advantages of this algorithm. First, it provides a favorable

convergence rate for most problems and second, it can be

used as an out-of-the-box solver without any information of

the spectrum of the matrix A (i.e. the eigenvalues of A) or

the right hand side b. The idea of the algorithm is to update

the current approximation of the solution by a new vector

with respect to the A-orthogonal projection of the residual.

With respect to the memory consumption this algorithm is

optimal due to the fact that only three vectors need to be

stored.

A pseudo code of the CG method is presented in Algo-

rithm 1, where A is the input matrix and b is the right hand

side of the system, the initial guess is given by vector x(0)

and the residual is denoted by r. Here, (p, q) is the scalar

product of two vectors p and q and the discrete L2-norm of

a vector r is given by ‖r‖L2 :=
√
h(r, r).

Each iteration of the Conjugate Gradient method gives a

new approximate solution x(k) where the stopping criterion

is evaluated by means of the corresponding residual r(k) =
b − Ax(k) which is implicitly calculated in the step r =
r − αq. Hence, in the fault free case and without floating

point rounding errors the exact residual in step k is given

by the recursion for r in Algorithm 1. The convergence of

the method, i.e. x(k) → x(∗) with the exact solution x(∗), is

determined by the condition number of the matrix A given

Algorithm 1 Conjugated Gradient Method

x = x(0) initial guess vector

R = r = b−Ax, ρ = (r, r), β = 0, p = 0
for k = 1 to MAXiter and ‖r‖L2 < ε‖R‖L2 do

p = r + βp
q = Ap
α = ρ/(p, q)
x = x+ αp
r = r − αq
ρold = ρ, ρ = (r, r)
β = ρ/ρold

end for
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by

κ(A) =
λmax

λmin

where λmax and λmin are the maximal and minimal (pos-

itive) eigenvalues of the matrix A. For our model problem

we find κ(A) = 4n2/π2 = 4N/π2.

Then it can be shown that the error x(k)−x(∗) in iteration

k can be estimated by

||x(k) − x(∗)||A ≤ 2

[√
κ(A)− 1√
κ(A) + 1

]k

||x(∗) − x(0)||A, (2)

where ||x||A :=
√
(x,Ax) is the energy norm, x(∗) is

the true solution, x(0) is the initial guess, x(k) is the k-th

approximation of the solution.

B. Computation and Storage Costs

From (2) one can conclude that the error in the energy

norm always decreases from one iteration to another. Fur-

thermore, an upper bound for the maximum number of

iterations k such that ‖x(∗) − x(k)‖A ≤ ε‖x(∗) − x(0)‖ can

be derived by

k ≤ 1

2

√
κ(A) ln

(
2

ε

)
+ 1

For our model problem, which is presented in Section III

with N = n2 unknowns, it follows that

k = O(N1/2). (3)

Due to the sparsity of the matrix A in this scenario, we

have 5N additions and 5N multiplications in the matrix-

vector multiplication, 2N operations per scalar product, and

2N operations per scaled vector update. In total, in each

iteration step 20N floating point computations are necessary,

such that the overall computational costs equals O(N3/2).
The storage costs can easily be derived by looking at

Algorithm 1 of the CG method. As one can see, five vectors

(x, b, r, q, p) and the matrix A are used. Since A is sparse

(most of the elements are zero), it is stored in a special

format consuming less space than storing each element

of the matrix (here, e.g. compressed sparse row format).

That means that for a problem with N unknowns a storage

capacity for 12N elements, each with a size of 64 bit (due

to double precision), is necessary.

C. Fault Tolerance Behavior

Without explicit control of the behavior of the solution

procedure the algorithm itself cannot “recognize” errors

occurring during the computation. This can lead to an

unacceptable accuracy loss for the solution. In addition,

the CG method uses a 3-term short recursion and has an

intrinsic memory effect with respect to the A-conjugated

search directions [23], [24]. Once this memory is disturbed,

e.g. by induced Soft Errors, the solution possibly cannot be

found and the iteration does not complete with success. If the

error appears as data corruption in the solution vector, this

error cannot be determined, leading to a crucial reliability

problem called silent data corruption. In order to avoid this,

an explicit computation of the residual vector in the CG

algorithm can be introduced. To this end, the residual update

r = r − αp needs to be replaced by r = b− Ax. However,

this step would significantly (more than 50%) increase the

computational costs in each iteration by additional 11N
calculations. Since this overhead also exists, if no errors

occur during runtime, this approach is not applicable for real

world problems. As a remedy, one can explicitly calculate

the exact residual only once after the solver has computed

the final solution, in order to detect a faulty solution, which

does not satisfy the accuracy requirements.

V. FAULT TOLERANCE METHODOLOGIES

In the following section we will explain our approaches

to maintain reliability for numerical computations. As men-

tioned in the introduction, modern servers and processors

use ECC protected memory and caches [3], [4]. Hence, we

use the reasonable assumption that all data, which belongs to

the control flow or is read-only is always correct. Especially

this means, that conditional branches, loops and the executed

operations (e.g. Ra=Ra+Rb) are always correct. Only the

operands and results of calculations can be faulty. For the

CG method presented in Algorithm 1 this means that the

stopping criterion is always evaluated correctly and also the

loop indices, which are often used as array indices as well,

are assumed to be correct. Hence, it is only the computation

part, which has to be protected.

A naive approach to make calculations less vulnerable

is the usage of Software Implemented Hardware Fault Tol-
erance (SIHFT) techniques in the form of Triple Modular
Redundancy (TMR). TMR triplicates the data, executes the

operation once on each of the three data sets and afterwards

chooses the correct result by majority voting. Hence, this

approach not only detects errors but also has the ability

to correct them. However, TMR is a brute force technique,

that does not take specific properties of the algorithm into

account. Furthermore, the triplication of data and operations

leads to a high overhead in terms of data but also in terms

of computing time (if not run fully parallel). Thereby, the

overhead with respect to runtime is that huge for low fault

rates, that this technique is in the most cases not usable (see

the results in Section VI).

A. Numerical Defect Correction Method

We propose to use a solver with good intrinsic error cor-

rection properties. Our goal is to obtain the correct solution

without huge additional costs in terms of performance and

data storage. Therefore, we have chosen the defect correction
method. As one can see in the pseudo code illustrated in Al-

gorithm 2 the defect correction method consists of two steps,
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Algorithm 2 Defect Correction Scheme

x = x(0) initial guess vector

R = r = b−Ax
while ‖r‖L2 > ε‖R‖L2 do

Solve (e.g. with CG) Ad = r
x = x+ d
r = b−Ax

end while

which are mathematically strictly equivalent to the original

linear system, if exact arithmetic is assumed. First of all,

there is an outer iterative loop in which the original problem

Ax = b is transformed into a defect problem Ad = r, where

the residual r is defined by r := b−Ax (for an approximate

solution x). This new problem is then solved in a second step

by an inner solver. Afterwards, the solution x is updated by

the computed defect x = x+d. In case the solution does not

satisfy a certain accuracy, these steps are repeated. By this

means the defect correction method ensures convergence to

the correct solution even if (hardware) computation faults

during the computation happened, which means that the

proposed defect correction scheme is robust. This is in

contrast to the standalone CG solver, where the convergence

cannot be ensured if computation faults occur (see Section

IV-C), which is a knock-out criterion. However, multiple

iterations of the outer loop of the defect correction method

can be necessary. Hence, the defect correction method can

correct (hardware) computation faults without the usage of

any explicit error detection technique (i.e. hardware failures

are treated as numerical defects). Furthermore, the defect

correction method is also “immune” against silent data

corruption, which is a big advantage of this approach. As

inner solver we use the already introduced CG method due

to its high convergence speed.

B. Computation and Storage Costs

Since we use the CG method as inner solver, the consid-

erations on the computation and storage costs for the inner

solver of our model problem (see Section III) can be found

in Section IV-B. For the calculation of the norm and the two

other operations in the outer loop of the defect correction

method only 15N floating point computations are necessary,

which means that in the fault free case the costs of the

outer loop are almost negligible compared to the costs of

the inner solver and a stand-alone CG solver. For example

in our experiments in the fault free case 52 CG-Iterations

are executed, which means that the overhead of the defect

correction method compared to the standard CG method is:

52 · 20N + 1 · 15N
52 · 20N = 1.01,

i.e. 1 %. However, if faults occur during the computation, the

outer loop is typically performed up to a few times. Thereby,

the corresponding performance overhead is based on two

effects. First, the number of outer loops may increase with

error injection rate. Second, the number of inner CG steps

may increase as well. But as observed in the experiments,

the additional overhead compared to a fault free execution

is kept in a moderate range (see the performance analysis in

Section VI-D). In terms of storage an additional capacity

of N elements (64N bits) is necessary compared to a

normal CG solver, since the defect vector d has to be stored

additionally.

C. Flexible Checkpointing

A further improvement can be achieved by adding a

flexible checkpointing technique to the inner solver. In case

of high fault rates, it is very probable that the inner solver is

stopped because faults lead to nan- or inf-values. In that

case, the intermediate results for the defect vector are thrown

away, which means that the inner solver is restarted another

time for exactly the same problem. In case the fault rate is

too high, there will be too many restarts which can adversely

affect runtime (and also convergence). For this reason, we

have developed a special flexible checkpointing technique

to overcome this problem. After every m-th iteration the

computed approximation (in that case the defect) is stored

in a backup vector. In case the inner solver stops due to

nan- or inf-values, the defect vector is restored from

the backup (checkpoint). Afterwards, the defect correction

method continues as normal. Since it can happen that the

inner solver is stopped before m iterations are done, m
can be decreased dynamically according to the fault rate.

In other words, the checkpointing rate is adjusted based on

the history of the restart rate for the inner solver.

However, this feature takes another 64N bits of storage

space for saving the backup vector. If m is large enough

(compared to the number of iterations of the inner solver),

the additional runtime overhead for backup storage and

loading is negligible. For a better overview and comparison,

the costs for all methods is put side-by-side in Table I

for the 2D Poisson problem with homogeneous boundary

conditions.

Method Computation Costs Storage Costs
Pure CG #CG-Iterations × 20N 768N bits

CG with TMR #CG-Iterations × 60N 1408N bits

Defect Correction
#CG-Iterations × 20N

832N bits
+ #Outer-Loops × 15N

Defect Correction #CG-Iterations × 20N
896N bits

& dyn. Checkpointing + #Outer-Loops × 15N

Table I
ESTIMATION OF THE COMPUTATION AND STORAGE COSTS FOR

DIFFERENT SOLVERS WITH DIFFERENT FAULT TOLERANCE FOR THE 2D
POISSON PROBLEM WITH N UNKNOWNS (FAULT FREE CASE)
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VI. RESULTS

In this section we analyze the proposed techniques for

“fault-tolerant” iterative solvers based on the CG method in

a practical situation. We compare the results of our approach

with those of the original CG method and those of a version

of the CG method combined with software-based Triple

Modular Redundancy (TMR). We perform a comprehensive

analysis with different fault rates, where faults are induced

by fault injection during runtime.

A. Fault Injection

Fault injection is a widespread technique to test the

reliability of different hardware or software. Since this work

is completely software-based, fault injection at algorithmic

level is used to investigate the reliability improvements

of the different techniques presented in Section V. Every

time an error-vulnerable data item (see classification in

Section V) is written, a fault injection routine is called. This

routine will then introduce a fault into the data item with

a given probability. Therefore, the data is transfered from a

decimal number representation (floating point) to a binary

representation according to the IEEE 754 specifications [25].

Afterwards, the fault injection routine randomly flips bits

and saves the data again with a decimal representation

(floating point). The entire process is illustrated in Figure 1.

Thereby, each bit has the same probability to be faulty. By

this means also multiple bit faults per data element can be

injected. The runtime for fault injection is not considered in

our timing measurements.

Our model assumption that no errors occur in datapaths

and in control logic is motivated by our conceptual approach.

These errors would result in unpredictable program behavior

and corrupted results. The corresponding errors and impact

on results can not be detected or corrected at an algorithmic

level. Since our proposed concepts are algorithm based

vector ....

random

1.345729... 0 0 0 1X
to binary

random

2.345729... 0 0 0 1X
to decimal

X

X

vector ....

inject fault

.... ....

.... ....

Figure 1. Fault injection routine
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Figure 2. Number of faults per second for each fault rate.

fault tolerance schemes, the underlying assumptions are

reasonable in our setting.

In our experiments a fault rate (= probability that a bit

is faulty) between 10−12 and 10−6 has been used. The

average number of (injected) faults for each fault rate is

illustrated in Figure 2. Please note that these fault rates

are extremely high compared to those observed in current

hardware. However, they indicate what can happen with

future hardware technologies or in special application areas

(e.g. aerospace with high radiation intensity).

B. Setup

In order to investigate the methodologies presented in

Section V, the standard test case for partial differential

equations – the 2D Poisson equation on the unit square with

homogeneous boundary conditions discretized by the Lapla-

cian matrix – has been used (see Section III). The number

of unknowns is 2 millions, which corresponds to a vector

size of 128 · 106 bits using the double precision floating

point format. All experiments have been performed on a

system with four 12-core AMD Opteron-6174 processors

with 2.2 GHz clock rate and with a total system memory of

128 GByte of DDR3-RAM. The operating system is RHEL

6 and for compilation of the different solvers the build-in

gcc-4.4.4 has been used.

A solution xcomp calculated by the iterative solvers is

considered to be a correct solution (within prescribed error

tolerance), if the difference to the exact solution x∗ satisfies

‖x∗ − xcomp‖ < 10−10. Since fault injection randomly

selects bits to be faulty, all experiments for different settings

have been performed 50 times in order to get reasonable

results.

C. Vulnerability of CG, CG with TMR and Defect Correc-
tion

As a first aspect of the analysis, the study of the calculated

solutions by the three different methods (CG, CG with
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Figure 3. Percentage of runs where the correct result has been obtained, silent data corruption has occurred, and runs that have been aborted.

TMR, and CG with defect correction) is a good choice.

Therefore, we introduce three different categories for the

computed solution: 1.) correct results, 2.) aborted runs with

no valid solution (i.e. error detection but no correction)

and 3.) completed runs with incorrect results. While the

first two categories preserve data integrity, the third one

corresponds to silent data corruption, which is a crucial

reliability problem. This means, that data is erroneous, but

the application and thereby the user do not recognize it.

Hence, it is extremely important to verify the calculated

solution xcomp by checking if ‖A·xcomp−b‖ < ε is satisfied

for a given ε.
In Figure 3 the percentages of the three categories are de-

picted. As one can easily see, the original CG method with-

out any fault tolerance techniques is in our case inappropriate

if fault rates are higher than 10−11. For bigger problem sizes,

even lower fault rates are problematic, since the probability

of a faulty bit is increasing with increasing problem size.

With software-based TMR as fault tolerance technique the

situation is much better. However, also the fault protection of

TMR is limited. Since TMR just triplicates the data, executes

the same operation on the three data sets, and afterwards

chooses the correct result by majority voting, high fault rates

where two out of three bits are faulty but both are 0 or 1

will lead to wrong results as it is illustrated in Figure 4. This

can manifest in silent data corruption, as it can be seen in

Figure 3 for a fault rate of 10−6.

To overcome such a problem a higher redundancy may be

a solution. However, already TMR comes along with a high

overhead for detection – even for low fault rates leading

to higher runtimes. Methods applying higher redundancy

techniques are hence even more time consuming.

Another option is the defect correction method, which we

use here. Based on the obtained results defect correction with

CG as inner solver delivers similar fault tolerance as with

CG with TMR for medium fault rates. In addition, due to

its mathematical properties the defect correction method is

”immune” against silent data corruption (undetected errors).

In contrast the original CG and CG with TMR may result

in silent data corruption.

For the original CG, silent data corruption is not a major

problem for high fault rates. In this case the fault rate is

that huge, that the CG method never satisfies its stopping

criterion. Hence no silent data corruption occurs, no matter

which solver is applied. However, if the fault rate is in a

medium range the stopping criterion of the CG method is

fulfilled in most of the cases, but the calculated solutions can

be faulty. If there is no additional check for the solution as

explained before, the result data can contain unrecognized

faults. Thereby, the measured peak value was an occurrence

rate of 58 % for silent data corruption for a fault rate of 10−9

for the original CG method. With TMR the vulnerability for

silent data corruption is heavily reduced.

However, also defect correction is not the “holy grail”.

As illustrated in Figure 3, for some very high fault rates

CG with TMR delivers more often a correct solution than

the defect correction method does (in our case for a fault

rate of 10−6 to 10−8). This is due to the fact, that TMR can

detect and correct the occurring errors on-the-fly, while in

Vector 1
(correct) 1 1 0

Vector 2
(faulty) 1 0 1

Vector 3
(faulty) 1 0 0

Result
(faulty)1 0 0

Figure 4. TMR can not correct always correct faults
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the defect correction method the faults are only implicitly

corrected by updating the solution and afterwards the resid-

ual rnew, and then start the inner solver (here: CG) again

to solve Ad = rnew (see Algorithm 2). If bit flips lead to

an abortion of the inner solver the solution is not updated

in the classical defect correction method. By this means, the

residual remains the same and the following call of the inner

solver tries to solve the same problem as before. Hence, this

can lead to endless loops, which are counted as aborts in our

categorization (runtime > 20× runtime of pure CG).

One possible solution to reduce the number of aborts due

to endless loops is a dynamic backup of data (flexible check-

pointing) during the run of the inner solver as proposed in

Section V-C. While in the classic defect correction scheme,

an abort of the inner solver leads to the problem that the

computed data is thrown away, in the proposed enhanced

version only the data of the last iterations of the inner solver

is thrown away and an intermediate backup is used to update

the solution. As the results in Figure 3 clearly show, the

advantage compared to the classic defect correction scheme

is huge. In our scenario the enhanced version could still

compute the correct solution in a reasonable amount of time

for a fault rate of 10−8, for which the classic version was

struggling. Admittedly, also this approach is not feasible

for huge fault rates (here: more than 10−8), under the used

runtime constraints.

D. Runtime of CG, CG with TMR and Defect Correction

Beside the pure fault tolerance of the different solvers,

their practical runtime is a very important property. In

Figure 5 the average runtime for the computation of a correct

solution for the three different approaches is depicted. Please

note that since the standard CG solver and the defect

correction scheme can not provide a correct solution within

120 seconds (i.e. 20 times the runtime in the fault free case)

for a fault rate of 10−8 their runtime results are not presented
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correct computed solutions

for this fault rate.

Due to the triplication of the data and the computations,

the TMR approach comes along with a huge and constant

runtime overhead. Figure 5 shows a performance overhead

of a factor 2.7 which underlines the theoretical factor 3

deduced from the costs analyzed in Table I. Especially

for low and medium fault rates this technique is hence

not the best solution. Here, the defect correction method

(with dynamic checkpointing) is clearly the better choice.

Furthermore, the results prove, that the runtime overhead

of the defect correction method for fault rates up to 10−11

compared to a fault free CG is negligible. However, if the

fault rates exceed a certain value, the tide is turning. Since

TMR can detect and correct faults on-the-fly no additional

iterations are necessary to compute the correct solution.

In contrast, the defect correction method needs additional

steps, which means that the inner solver is called multiple

times, and hence needs more time to calculate the correct

solution. In this case, checkpointing helps to further reduce

the average runtime. However, please note that TMR is

only better (in terms of runtime and fault tolerance) than

defect correction for extremely high fault rates, which might

be unrealistic for current technologies. Therefore, one can

conclude that a combination of the defect correction method

with checkpointing and TMR is optimal, whereby TMR is

only activated for a very high fault rate.

As already mentioned in Section V-A, the defect cor-

rection scheme contains two parts, that contribute to the

runtime: first the number of outer loops and second the

number for CG iterations. The number of outer iterations

in the correction scheme depends on the error injection rate.

For 0 injected faults (error probability = 10−12), the outer

loop is performed a single time and the inner CG loop has

52 iterations for our model problem. In this scenario, there is

no overhead from error correction. For an error probability

of 10−11 in average 0.2 faults are injected. In that case,

the outer loop is still run just a single time, whereas for

an error probability of 10−10 (i.e. 4.12 injected faults in

average) the outer loop is performed 1.58 times in average.

The total number of CG loops in this scenario is 75.66 in

average leading to an overhead compared to the fault free

case with the standard CG of a factor of 1.47. If the error

rate is increased to 10−9 the average number of injected

faults raises to 114, leading to 3.7 executions in average of

the outer loop and 223 CG loops. So the error correction

overhead is a factor of 4.3 in terms of additional work.

This overhead can be seen in the runtime figure presented

in Figure 5.

VII. CONCLUSION

In this paper we presented an Algorithm-based Fault Tol-

erance (ABFT) scheme for an iterative linear solver based on

the Conjugated Gradient method (CG) by taking advantage

of numerical defect correction. In our proposed method,
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errors, due to hardware failures or external disturbances, are

treated as numerical defects and by that means handled by

the numerical defect correction method, which uses CG as

its solving engine.

Furthermore, we enhanced our method with dynamic

checkpointing when the range of numerical defects goes into

infinity. Thereby, the inner solver does not throw away its

computed results but instead just goes back to the previous

checkpoint. The checkpointing steps are set dynamically

based on recent history of retries.

Our experimental results based on fault injection on var-

ious fault rates and comparison with software implemented

hardware fault tolerance (SIHFT) using Triple Modular

Redundancy (TMR) at instruction level clearly shows the

benefits of the proposed method compared to such brute-

force SIHFT-TMR method. The runtime overhead of our

proposed method is “pay as you go”, meaning that there is

practically only a runtime overhead when errors have to be

corrected with additional iterations, which is only the case

for very high fault rates. However, the runtime overhead

gets larger with increasing fault rate. This is in contrast with

TMR in which there is a “prepaid cost” even if no errors oc-

cur. Finally, our proposed approach always guarantees data

integrity (i.e. there is no silent data corruption) combined

with good fault tolerance, unlike TMR.
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