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Abstract—As CMOS technology scales down into the nanome-
ter regime, designers have to add pessimistic timing margins to
the circuit as guardbands to avoid timing violations due to various
reliability effects, in particular accelerated transistor aging. Since
aging is workload-dependent, the aging rates of different paths
are non-uniform, and hence, design time delay-balanced circuits
become significantly unbalanced after some operational time. In
this paper, an aging-aware logic synthesis approach is proposed
to increase circuit lifetime with respect to a specific guardband.
Our main objective is to optimize the design timing with respect
to post-aging delay in a way that all paths reach the assigned
guardband at the same time. In this regard, in an iterative
process, after computing the post-aging delays, the lifetime is
improved by putting tighter timing constraints on paths with
higher aging rate and looser constraints on paths which have less
post-aging delay than the desired guarband. The experimental
results shows that the proposed approach improves circuit lifetime
in average by more than 3X with negligible impact on area.
Our approach is implemented on top of a commercial synthesis
toolchain, and hence scales very well.

I. INTRODUCTION

By aggressive technology down-scaling into the nanometer
regime, design of robust systems becomes extremely chal-
lenging [1, 2]. Among various reliability threats accelerated
transistor aging due to Bias Temperature Instability (BTI) and
Hot Carrier Injection (HCI) can significantly affect the reliable
operation of nanoscale circuits. Aging can considerably reduce
the operational lifetime and even cause timing failures in
the field. Moreover, it is predicted that, since supply voltage
does not scale at the same pace with the device geometrics,
the increased current density and temperature will further
accelerate device degradation in future technology nodes [3, 4].

To avoid timing violations due to various reliability effects
such as temperature, voltage droop, and accelerated transistor
aging, designers add pessimistic timing margins to the circuit
as guardbands. In guardbanding, the degradation that may be
incurred over the expected lifetime is estimated and circuit
operating frequency is reduced accordingly which is eroding
gains from technology scaling. For example, a 65 nm technol-
ogy requires a 20% guardband to avoid aging-induced failures
within the first 10 years [3].

Since signal probabilities and switching activities, which
affect BTI and HCI, respectively, alongside with temperature
vary broadly for different transistors in a circuit, aging rate of
different gates and paths are not uniform [3, 5, 6]. Hence, cir-
cuit timing, which is conventionally balanced according to the
design time (t = 0) delay, becomes significantly unbalanced
after some operational time (t >> 0). As a consequence, the
conventional guardbanding technique is costly as it is based
on the worst-case critical-path delay in the expected lifetime,
while other paths might have enough slack to work properly
for longer time. As a result, the latter ones can be designed

slower to save area and energy, while the critical ones should
be designed faster to increase the circuit lifetime.

Although synthesis techniques can be improved to consider
the post-aging delay using pre-characterization of cells for
different signal profiles and temperature conditions [7], none of
existing commercial synthesis toolchains has such capabilities.
Aging-aware gate-sizing is an alternative solution which can be
used to balance the circuit timing according to post-aging de-
lays [6, 8–11]. While these techniques can efficiently increase
the lifetime without any change in the circuit topology, for the
same reason, they have limited aging mitigation capability, as
it will be shown later in our experiments.

In this paper, we propose an aging-aware synthesis ap-
proach to balance the circuit timing with respect to a spe-
cific guardband to improve lifetime. In our approach, after
synthesis, post-aging delay computation and optimization are
done iteratively. In each round, after computing the post-aging
delays, the lifetime is improved at the expense of area by
putting tighter timing constraints on paths with higher aging
rate. However, the impact on circuit area is compensated by
putting looser constraints on paths with less post-aging delay
than the desired guarband. As a result, after several rounds
of re-synthesis and aging computations, the circuit lifetime is
improved with respect to the desired guardband with negligible
impact on area.

Unlike previous gate-sizing-based approaches, the pro-
posed flow is built on top of a commercial synthesis toolchain
and hence completely relies on the internal mechanisms of
commercial synthesis tools (such as gate-sizing, re-structuring,
and logic-borrowing) to improve the circuit timing and area in
an aging-aware manner. The experimental results on ITC99
benchmarks show that our proposed approach results in 3.36X
lifetime improvement while gate-sizing can only gain 1.77X.
Moreover, its runtime is comparable with that of conventional
guardbanding techniques.

The rest of paper is organized as follows: The basics of
NBTI and HCI phenomena along with existing mitigation
techniques are briefly explained in Section II. Section III
presents our proposed approach followed by experimental
results in Section IV. Finally, Section V concludes the paper.

II. PRELIMINARIES

Both, BTI and HCI, result in a threshold voltage shift
of the impaired transistors which in turn affect the gate and
path delays. In this section, we briefly explain how these
phenomena degrade the circuit delay over time and discuss
different mitigation approaches.

A. Transistor Aging
1) Bias Temperature Instability: BTI is a phenomenon that

increases transistor threshold voltage over long periods of time,



causing the drive current to decrease. This leads to slowing
down the logic gates, eventually causing the circuit to violate
its timing specifications. BTI affects PMOS transistors in form
of Negative BTI (NBTI) and NMOS transistors in form of
Positive (PBTI). While the first one is well known to be a
major reliability challenge, PBTI emerged as an issue with the
introduction of high-k gate materials [12]. When the gate node
of a PMOS/NMOS transistor is negatively/positively biased
(logic ’0/’1 is applied), the transistor experiences NBTI/PBTI
stress. As a result, the magnitude of threshold voltage (Vth) in-
creases. When the negative/positive bias is removed (recovery
phase), the previous Vth-shift is partially compensated. In long
term, the magnitude of BTI-induced delay degradation depends
on the ratio of stress to recovery time which can be derived
from the gate input signal probability (sp) (for NBTI: 1-sp, for
PBTI: sp). In addition, temperature has an exponential effect
on BTI [3, 4]. To estimate the threshold voltage shift due to
BTI we used the model from [13].

2) Hot Carrier Injection: HCI mainly affects the threshold
voltage of NMOS transistors. During transitions, energetic
(hot) electrons hit the interface between channel and gate
oxide. As a results, free electron-hole pairs can be created and
free electrons can be trapped in the gate oxide which eventually
increases the threshold voltage. The degradation rate depends
on the number of transitions, and hence on clock frequency,
switching activity (sw), runtime, and also temperature [14]. In
this work, we use the model adapted from [15] to estimate the
threshold voltage shift due to HCI.

B. Related Work
Aging-aware synthesis: A synthesis approach using a

BTI-aware cell library is introduced in [7]. To obtain the
BTI-aware library all cells are characterized with respect to
different input signal probabilities. However, this has two
main shortcomings. First, signal probabilities should be calcu-
lated according to the post-synthesis simulations as these are
workload-dependent and cannot be accurately calculated using
analytical approaches during the synthesis flow, leading to an
inaccurate aging estimation. Second, this technique cannot be
integrated in the commercial synthesis flow.

Aging-aware re-timing: In order to balance the circuit
timing with respect to a specific guardband, gate-sizing has
been applied to gates with higher aging rates [8–11]. This
will result in considerable lifetime improvement at the expense
of some area overhead. In [6] a technique is presented that
balances the instruction pipeline delays using gate-sizing and
threshold voltage tuning at the expected lifetime. In this
regards, stages with higher aging rates are designed faster
and those with lower rates are designed slower. However, this
technique is coarse-grained and hence cannot improve timing
inside the pipeline stages/blocks. The technique presented in
[16] employs time-borrowing flip-flops to balance the aged
circuit timing based on the sensed delays. However, this
technique might increase the clock skew as it manipulates the
circuit clock tree.

Besides the existing aging-aware synthesis and re-timing
categories, there are three major categories of aging mitigation
techniques which are orthogonal to our proposed approach.

Signal probability balancing: One approach for BTI
mitigation is to even out the wearout of pull-up and pull-down
networks by balancing the signal probabilities. The techniques

presented in [17, 18] employ cell-flipping in order to make
the signal probability of SRAM cells close to 50%. Another
technique presented in [19] periodically flips the leading bits of
narrow-width values stored in an integer register-file in order
to mitigate the overall degradation of the register-file. While
bit-flipping techniques are very effective to mitigate the effect
of BTI in memory elements, BTI mitigation of transistors
in logic blocks needs more sophisticated approaches. The
techniques presented in [4, 20, 21] apply pre-defined input
vectors, selected according to signal probabilities of the block
signals, on the input ports of blocks during idle cycles in
order to mitigate aging. More specifically, as shown in [22],
selection of an appropriate No-operation instruction reduces
the degradation of execution units such as ALUs. Another
technique proposed in [23] relies on alternating true- and
complement-mode operations to equalize the utilization of
devices in the data-path of processors.

Sense and adapt: An alternative aging mitigation solution
is to extract the circuit delay during runtime using timing
sensors [16, 24–27] or history sensors that track usage patterns
[28] and scale the voltage or frequency accordingly. In order to
avoid possible impact of timing sensors on the circuit timing,
sensing can be based on replica paths which are demonstrative
for the worst aging scenario in the circuit [5].

Power/temperature reduction techniques: Since temper-
ature and supply voltage highly affect both BTI and HCI, a
power reduction technique which reduces the overall temper-
ature can be used to improve the lifetime. Particularly, it is
shown in the literature that power gating [29, 30], dynamic
voltage and frequency scaling [31, 32], and adaptive body
biasing [33] can alleviate aging.

III. PROPOSED APPROACH

A. Motivation
Since aging-induced delay increase of a gate is highly

dependent on the gate type, input signal profile, transition time,
and temperature, a non-critical path might become critical and
other way around over the operational lifetime [3, 6]. As a
result, although the circuit timing is balanced at design time,
due to different aging rates of transistors, it becomes signif-
icantly unbalanced after a certain period of time. Moreover,
in the conventional non-aging-aware synthesis approach, the
paths with large timing slacks at design time are designed
slower in order to save area. However, these paths which are
intentionally designed slower may have high aging rates and
become critical over time. Considering these issues, an efficient
approach to improve the lifetime is to balance the paths with
respect to their post-aging delays based on a desired guardband
instead of balancing the delays at design-time as it is done
nowadays.

To illustrate this circumstance let us use the b19 benchmark
circuit as a motivational example. In Figure 1, the data arrival
times, defined as the time from the clock input through the
launching flip-flop to the latching flip-flop or primary output,
for nine representative flip-flops are shown for a non-aging-
aware version of b19 (a) and an aging-aware one (b). Although
the minimum clock period at design time is balanced according
to the data arrival time of FF 1, the paths leading to FF 4
have higher aging rates and hence the data arrival time of this
FF is the first one reaching the assigned guarband. Since in a
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Fig. 1. Design time and post-aging data arrival times before and after aging-aware optimization for several representative flip-flops in b19 benchmark circuit

non-aging-aware synthesis the corresponding paths of FF 4 are
intentionally designed slower to save area, as it can be seen
in the figure, it has almost the same data arrival time as FF 1.
As a consequence, these paths can be designed faster to either
decrease the guardband for a specific lifetime or extend the
circuit lifetime for a certain amount of guardband (see Figure
1.b).

Commercial synthesis tools employ a variety of techniques
such as gate-sizing, register-retiming, and re-structuring to
minimize the area while satisfying specified timing constraints
[34, 35]. While previous techniques [9–11] have only focused
on the gate-sizing technique, we will use all available tech-
niques in a commercial synthesis tool to extend the lifetime.

In the proposed approach, our main objective is to assign
aging-aware timing constraints to the circuit during the syn-
thesis phase to improve the lifetime with respect to a particular
amount of guardband. In this regard, in an iterative process,
tighter timing constrains are assigned to paths which would
exceed the desired guardband earlier. This will increase the
overall lifetime at the expense of area. At the same time, in
order to reduce the area overhead due to the first step, the
timing constraints of paths that need longer time to reach
the desired guardband are loosen. This optimization process
is repeated until reaching a point that circuit lifetime cannot
be further improved.

The data arrival times of the same b19 flip-flops after
the aging-aware optimization are shown in Figure 1.b. As
it can be seen, the corresponding paths of FF 4 and some
others which have higher aging rates are designed faster to
improve the lifetime. In contrast, those of FF 1 and FF 5 are
slowed down to compensate the area penalty. Although the
maximum data arrival time at design time for the optimized
circuit is more than that of the original circuit, its post-aging
characteristic is much better. In case of having 10% guardband,
the optimized circuit works properly for 4027 days while
the original circuit can only work for 663 days, meaning
6.07X lifetime improvement. If lifetime improvements are of
a secondary interest, this approach can be used to reduce
the amount of guardband. For instance, the optimized circuit
requires just 6.68% (instead of 10% in the original circuit)
for 663 days of operation which can be translated into more
than 3% increase in the circuit maximum frequency and hence
system performance.

Our investigation shows that considering a separated con-

straint for each path is infeasible for large circuits, and hence,
as elaborated in Section III-B, we put constraints on the
flip-flops and primary outputs. In order to assign constraints,
detailed timing information of the circuit at design time and
after some operation time are required. In this regard, we have
adapted the static timing analysis for aged-delay computation.
This is explained in Section III-C. According to the timing
analysis results, some timing constraints are applied during
each round of the optimization process to increase the circuit
lifetime. The optimization details are given in Section III-D.

B. Optimal Targets for Timing Constraints
Previous techniques [6, 9, 10] extracted a list of critical

paths and by analysing this list, they improved the lifetime of
the circuit. Theoretically, in case of having a maximum aging
rate of α% for each transistor, all paths that have less than α%
slack time should be considered during the optimization. How-
ever, as the number of such paths could be intractably large,
these previous techniques evaluated only a limited number of
paths. For example, the b19 benchmark circuit has more than
100,000,000 paths. Accumulative distribution of these paths
for different slack times is reported in Figure 2. As it can be
seen, even consideration of paths with only 5% relative slack
time becomes intractable in industrial-size circuits.

In our proposed approach, we employ a heuristic technique
to overcome this problem. Since each path leads to either
a flip-flop (FF) or a primary output (PO), by providing a
timing constraints on a specific FF/PO, this constraint will
be automatically applied to all corresponding paths. However,
this constraint mainly affects the paths which do not meet it.
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It should be noted that due to shared gates (path segments)
among different paths, it is quite possible that optimization
of one path changes the timing of other paths. As in our
example, b19 benchmark circuit has only 6042 FFs and 30
POs, meaning in our approach there are only 6042+30=6072
timing constraints (not 100M).

For aging-aware circuit optimization, these constraints pro-
vide almost the same result as offered by previous techniques
obtained by putting constraints on paths, however, with a much
shorter runtime. The only difference is that in some cases this
approach might affect the timing of non-aging critical paths.
As an example, consider two paths leading to the same FF
and with almost the same design time delay but one is aging
critical while the other one is not. Since we are putting some
constraints related to all paths leading to the FF to reduce the
design time delay of the aging-critical path, the other path also
follows these constraints. This will result in some unnecessary
area penalty. However, this area overhead is not considerable
as in commercial synthesis tools parts of the circuit which are
shared among several paths with unsatisfied timing constraints
have higher optimization priority. In the above example, in
case of existence of some shared sub-paths or gates between
two paths, the synthesis tool puts more effort in these parts to
avoid double overhead.

C. STA-based Post-aging Delay Computation
Static Timing Analysis (STA) is a well-known method for

computing the expected timing of a digital circuit. In this
section, it is demonstrated how this technique can be adapted
to compute the post-aging delays for our purpose.

STA needs the timing information of all elements (i.e.
gates, flip-flops, interconnects) to calculate the minimum clock
period. Design time delays of all elements can be easily
extracted by analysing the Standard Delay Format (SDF) file.
The SDF file is provided by all commercial synthesis tools
and includes timing constraints, path delays, and interconnect
delays. By topological traversing a gate-level netlist extracted
from a synthesis tool and taking into account maximum delay
values from its corresponding SDF file, one can easily extract
the maximum rise and fall data arrival time delays to all nodes
including flip-flops inputs and POs. The minimum clock period
is determined according the longest path in the circuit.

For the post-aging computation, we have employed a modi-
fied STA. The main difference is that an application profile (i.e.
signal probabilities and switching activities) extracted from a
post-synthesis simulation along with temperature obtained by
a temperature model (e.g Hotspot tool [36]) are taken into
account and based on the aging models (see Section II-A)
the post-aging delay of each cell is estimated. During the
post-synthesis simulation, some input vectors (e.g. a set of
applications in case of a processor) based on the expected
circuit functionality are simulated on the synthesized netlist
and signal probabilities and switching activities for all circuit
nodes are extracted. For temperature estimation, since temper-
ature of a cell strongly depends on that of surrounding cells,
the temperature model has to consider the circuit layout as well
as the power profile (both leakage and dynamic) of the entire
circuit. Using this information the Vth-Shift of each transistor
is estimated and then, using an alpha-power model [37] the
gate delay degradation is calculated (see Figure 3.a). Finally,
during topological traverse post-aging delay of cells are used
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to extract the data arrival time on all FFs/POs. A simple
example of aging-aware STA analysis is shown in Figure 3.b.
As it can be seen, it is very similar to the conventional STA
analysis but here post-aging delays are taken into account
during computations. It should be mentioned that the runtime
of the aging-aware STA analysis is in order of O(n) where n is
the number of cells (i.e. gates and flip-flops) in the circuit. This
is because each gate once and each flip-flop twice (once in the
beginning for launch time and another at the end for capture
time) are considered in the computation (see computation path
in Figure 3.b)

In order to extract the circuit lifetime for a specific guard-
band, a binary search operation is performed over time (e.g
0-20 years). In each step, for a given time interval, the aging-
aware STA analysis is done for the interval midpoint and the
maximum post-aging delay of the circuit is computed and the
time interval is shortened according to the relation between
this delay and desired guardband. This continues until the
time interval becomes small enough i.e the difference between
higher and lower bound is smaller than a predefined number
(e.g. few days), it is reported as the estimated lifetime for the
given guardband which is denoted as tl.

In summary, in STA-based circuit lifetime estimation with
respect to the desired guardband, a binary search is performed
over time and in each step STA analysis is perform (as
explained from order of O(n)) to extract the post-aging delay.
The overall runtime of this is from order of O(n · log(l/θ))
where n is number of cells, l in initial interval length in the
binary search and θ is the predefined threshold. In case that the
time interval is less than θ the search operation is terminated,
so it is similar to case that a binary search operation is perform
among l/θ which is from order of O(log(l/θ)). Since both l
and θ are constants, O(n · log(l/θ)) ≈ O(n).

D. Timing Constraints Optimization
Conventionally, during synthesis each path follows the

timing constraint of the clock connected to its leading flip-flop.
However, it is possible to assign other constraints (tighter or
looser) to desired flip-flops. This will be automatically applied



to all corresponding paths. We employ this capability to modify
the timing constraints of selective FFs/POs in order to improve
the lifetime of the circuit with respect to a specific guardband.

Due to the shared gates among different paths, the min-
imum required data arrival time on one specific FF/PO is
a function of timing of other FFs/POs. As a result, the
optimization of constraints has to be performed iteratively with
very small timing adjustments (e.g. 0.5% of overall delay)
between two consecutive iterations, to monitor the effect not
only on the target FF/PO but also on all others. Thus, an
iterative optimization solution is employed to improve the
circuit lifetime. The optimization process is explained in details
in the rest of this subsection

In case that the designer adds a guardband g (as a percent-
age of total delay) to the current clock period Tclk, the mini-
mum clock period after guardband becomes T ′clk = Tclk(1+g).
Let us assume that the maximum data arrival time for the
ith FF/PO is di. By computation of the post-aging delay
according to the STA-based technique explained in Section
III-C, the expected lifetime, i.e. tl, is estimated. Also, using
this approach, the degraded data arrival time for the ith FF/PO
denoted as d′i is computed. According to these definitions, the
maximum post-aging data arrival time at time tl should be
T ′clk.

During aging-aware synthesis, in an iterative process, the
timing constraints of FFs/POs are optimized to increase circuit
lifetime with little area overhead. The current timing constraint
on the ith FF/PO is denoted as cci, and in the beginning it is
initialized to the corresponding clock period of which is Tclk.
The optimized timing constraint (denoted as oci) can be tighter,
looser, or similar to the previous iteration.

Tighter constraint: In case that the post-aging delay of
a FF/PO is very close to the assigned guarband, this FF/PO
determines the final lifetime. Thus, a tighter constraint is
assigned to this. In other words, if d′i > T ′clk(1− ε), where ε
is pre-defined small number, oci ← cci(1 − ε) (see FF A in
Figure 4). This will force the synthesis tool to reduce di of
this FF/PO by designing its corresponding paths faster with
the intention that the post-aging delay of these paths (d′i) is
reduced and as a result the circuit lifetime is improved.

In case of success, the optimized circuit has less di than
the previous one, but this does not always guarantee more
lifetime for two reasons. First, circuit optimization will also
affect the aging rates, due to gate sizing and path re-structuring,
and in some cases, optimization may result in higher aging
rates. Second, in some optimization iterations, the circuit
optimization may change its structure in a way that a FF/PO
with enough timing slack (di << oci) has a higher data
arrival time than in the previous step and this specific FF/PO
may become the lifetime-limiting one. However, this negative
impact on lifetime does not indicate that the circuit cannot
be improved further. In most cases, in the next optimization
iterations and by putting some new constraints on these paths
this negative effect will be solved.

Looser constraint: In the previous case, it is explained
how constraints on some FFs/POs can reduce the correspond-
ing post-aging data arrival times to be very close to T ′clk(1−ε).
In the opposite case, if there is some slack with respect to
T ′clk(1 − ε) on a FF/PO at tl, by putting looser constraint on
this FF/PO, the synthesis tool can use the additional slack time
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to reduce the area. However, not the entire available slack time
can be used for constraint optimization. Instead, the aging rate
of the FF/PO data arrival time has to be considered as well.
In other words, assuming the same aging rate for the FF/PO
data arrival time in the optimized circuit, only di/d

′
i fraction

of the available slack can be used for constraint optimization
and the rest is assumed to be used due to the extension of the
post-aging delay change. Additionally, as the aging rate of the
FF/PO data arrival time might change, using the entire slack
time with respect to di/d

′
i can lead to a timing violation. In

this regard, T ′clk(1−ε−α) is used in looser constraints instead
of T ′clk(1− ε), where α is a very small constant.

Considering all these aspects together, two cases may occur
when there is enough slack time (d′i << T ′clk). First, in
case that the current implementation has effectively used its
slack time , i.e. di ≈ cci < d′i, the optimized constraint is
cci + slack × di/d

′
i, where slack = T ′clk(1 − ε − α) − d′i

(see FF B in Figure 4). Second, in case that cci > d′i, the
current implementation does not use the available slack as
it cannot be designed any slower to save area. In this case,
the optimized constraint is set to the maximum possible value
which is T ′clk(1− ε− α)di/d′i (see FF C in Figure 4). These
two cases can be summarized to if d′i < T ′clk(1 − ε − α),
oci ← min[cci + slack × di/d′i, T ′clk(1− ε− α)× di/d′i].

No-change constraint: When none of mentioned con-
ditions are true, the previous constraint is preserved, i.e.
oci ← cci.

Using these three conditions, new constraints are extracted
at each iteration and then optimization is done by a synthesis
tool to satisfy these constraints with little impact on area.
During the optimization iterations, at some point, the synthesis
tool cannot satisfy at least one of the assigned constraints. This
mostly occurs on FFs/POs with tighter constraints as these
cannot be designed any faster. But in some cases, it may also
happen for paths with looser or no-change constraints as a
result of optimization of tighter constraints on other FFs/POs.
At this point, we search among different iterations and choose
the circuit with maximum lifetime as target implementation.
Please note that this is always in one of the last few iterations.
In case that the lifetime of several implementations are very
close (e.g. difference is less than 30 days) but there are
significant variations on the area, one with the minimum area
is preferred.

E. Overall Flow
The proposed aging-aware optimization flow is summa-

rized in Algorithm 1. First, the circuit is synthesized using a
commercial synthesis tool and its gate-level netlist, SDF file,



and maximum design time delay is extracted. Also, as we inter-
rupt the synthesis operation to perform aging computations and
extracting new constraints, a checkpoint of the current status
of the synthesis process is stored (e.g in ddc format in Design
Compiler) to be used during the next optimization iteration.

In order to extract the temperature profile of the circuit, a
power profile of the circuit is required. The power profile is ob-
tained by running some input vectors during the post-synthesis
simulation (e.g. using Modelsim). During the simulation, the
application profile is stored in the SAIF format. This is given to
a power analysis tool to estimate leakage and dynamic power
consumption of each cell. The power profile is forwarded into
the temperature estimation tool to compute the temperature of
each cell.

The constraints are set to T ′clk and are optimized according
to the explanation provided in Section III-D (line 13-21). In
case that at least one of the constraints cannot met, the opti-
mization is terminated and by searching among all iterations
the best implementation from lifetime point of view is selected.

As it is demonstrated in the experimental results, this
optimization does not affect most of the cells, hence power
profile will not change significantly and thus temperature
will not change much. In order to avoid time-consuming
temperature estimation, we only extract temperature once in
advance for all cells. Since optimization rarely affects the flip-
flops, we assume flip-flops have constant temperatures, and for
new cells created due to the optimization, their temperature is
set to the that of the closet flip-flop in the netlist. In case of
change in flip-flops due to the time-borrowing technique, new
flip-flops take the temperature of the original one.

Algorithm 1: Constraints Optimization
input : HDL: design Verilog/VHDL description
input : lib: synthesis library
input : app: application
input : g: desired guardband
input : Tclk: minimum clock period

DDC, SDF, netlist ← synthesize (HDL, lib, Tclk)1
SAIF ← post-synthesis-simulation (netlist, SDF, app)2
pow ← power-estimation-tool (netlist, SAIF)3
layout ← place-and-route-tool (netlist, lib)4
temp ← temperature-estimation-tool(netlist, pow,layout)5
T ′
clk ← Tclk(1 + g)6
oci ← Tclk7
repeat8

cci ← oci9
sp, sw ← post-synthesis-simulation (netlist, sdf, app)10
di, d

′
i, tl ← STA (netlist, SDF, sw, sp, temp, T ′

clk)11
foreach i in FF/PO do12

if d′i > T ′
clk(1− ε) then13

oci ← cci(1− ε)14
end15
else if d′i < T ′

clk(1− ε− α) then16
oci ← min[cci + (T ′

clk(1− ε− α)− d
′
i)di/d

′
i17

, T ′
clk(1− ε− α)× di/d

′
i]

end18
else19

oci ← cci20
end21

end22
DDC, SDF, netlist ← incremental-synthesis (DDC, lib, oci)23
temp ← adjust-temperature (temp)24

until constraints met25
Search among all iterations and find the one with maximum lifetime26
Report constraints of that step as final answer27

F. Other Timing Constraints
The proposed approach has no limitation about different

timing scenarios in the design. It should be noted that, in

the proposed approach, the synthesis tool automatically takes
care of setup/hold time and input/output delay constraints.
Additionally, this approach can be applied to designs with
more complicated timing scenarios such as multiple clock
domains without additional effort.

IV. EXPERIMENTAL RESULTS

We have conducted several experiments on ITC99 bench-
mark circuits to show the effectiveness of the proposed ap-
proach and compare it with pure guardbanding and gate-sizing
techniques.

A. Experimental Setup
All parts of the proposed flow excluding synthesis, op-

timization, power consumption estimation, and temperature
computation are integrated in an in-house tool developed with
C++. Synopsys Design Compiler is employed for synthesis and
optimization operations. However, the proposed approach can
be applied to all other commercial synthesis tools as well.
The circuit is first synthesized with the minimum possible
clock period using the Nangate 45 nm standard cell library.
The minimum clock period can be determined by setting
the clock period to zero during synthesis and extracting the
maximum negative slack. Then, during optimization iterations,
new constraints are assigned to the corresponding signals of
each FF/PO using the set max delay command provided by
Design Compiler.

In order to extract application profiles, we have used
random input vector simulations with an average signal prob-
ability of 0.5 as there is no specific application for ITC99
benchmark circuits. For each benchmark circuit, a testbench
containing 106 input vectors is used in each optimization
round to calculate signal probabilities and switching activities.
This will assure us that we have exactly the same profile for
unchanged parts of the circuit.

In order to extract the power consumption using Design
Compiler, all changes of the internal signals when applying
input vectors are necessary. Therefore, SAIF files are extracted
using Modelsim. It should be mentioned that as extracting
SAIF files and analysing them doubles the effort (most time
consuming part is access to file for both writing and reading),
we just used them for extracting power as it is needed once
in advance. For computing signal probabilities and switching
activities during optimization iterations, we have used the
logic simulator embedded in our in-house tool. The signal
probabilities and switching activities comparison for all ITC99
benchmark circuits confirmed that our logic simulator extracts
the exactly same results in almost 30% of the time needed for
extracting and analysing SAIF files.

The temperature of all elements in the circuit are extracted
by the means of Hotspot. This tool gets the power profile
extracted from Design Compiler and also the physical layout
of the circuit and computes the temperature with respect
to physical adjacencies, switching activities, etc. The circuit
layout is extracted by Cadence SOC Encounter.

B. Lifetime Improvement
The lifetime of ITC99 benchmark circuits for both gate-

sizing and the proposed approach in case of 10% guardband
are presented in Table I. As it can be seen, in average



TABLE I. EVALUATION OF GUARDBANDING, GATE-SIZING, AND PROPOSED APPROACHES FOR 10% GUARDBAND, AND OPTIMIZATION PARAMETERS OF
ε = 0.5% AND α = 0.2%

Circuit Elements Guardbanding Gate-sizing [8–11] Proposed

FFs Gates Tclk

[ns]
Lifetime
[days]

Area
[µm2]

Run-
time[s]

Lifetime
improv.

Area
improv.

Lifetime
(improv.)[days]

Area
improv.[µm2]

Opt.
rounds

Runtime
(overhead)[s]

b01 5 56 0.344 980 93.6 29.7 1.61X −1.13% 4,404 (4.49X) 94.3 (−0.74%) 16 72.9 (2.45X)
b02 4 29 0.315 941 57.6 18.3 1.79X −0.98% 2,318 (2.46X) 58.2 (−0.99%) 8 31.0 (1.69X)
b03 30 152 0.389 951 372.7 33.9 1.35X −0.41% 1,992 (2.09X) 374.5 (−0.49%) 7 44.3 (1.31X)
b04 66 545 0.480 664 1,036.2 74.2 2.32X −2.80% 2,684 (4.04X) 1,020.3 (+1.53%) 20 135.8 (1.83X)
b05 34 730 0.701 1,091 1,115.7 112.1 1.07X −0.12% 1,574 (1.44X) 1,080.1 (+3.19%) 3 123.2 (1.10X)
b06 9 71 0.357 881 144.6 19.1 1.42X −0.66% 1,332 (1.51X) 145.8 (−0.82%) 4 33.2 (1.74X)
b07 44 625 0.445 702 1,030.2 38.4 1.27X −0.89% 1,536 (2.19X) 1,008.2 (+2.14%) 3 48.6 (1.27X)
b08 21 183 0.460 602 354.3 26.5 1.18X −0.13% 1,348 (2.24X) 347.4 (+1.95%) 4 38.4 (1.45X)
b09 28 203 0.432 974 413.2 23.5 1.00X +0.00% 974 (1.00X) 393.4 (+4.80%) 2 29.4 (1.25X)
b10 17 220 0.455 663 372.9 24.3 1.28X −0.79% 859 (1.30X) 363.9 (+2.40%) 3 29.9 (1.23X)
b11 30 830 0.519 721 1,221.9 91.8 1.86X −2.34% 2931(4.07X) 1,267.4 (−3.72%) 6 120.8 (1.32X)
b12 121 1,133 0.573 882 2,114.7 81.8 2.39X −3.13% 3,526 (4.00X) 2,109.8 (+0.23%) 23 183.3 (2.26X)
b13 48 324 0.382 1,124 677.0 29.2 1.00X +0.00% 1,401 (1.25X) 656.2 (+3.07%) 3 31.2 (1.07X)
b14 215 9,289 1.299 606 12,991.4 1,796.2 1.93X −2.28% 1,571 (2.59X) 13,130.2 (−1.07%) 27 2189.6 (1.22X)
b15 417 7,995 1.010 884 12,501.4 967.5 2.11X −2.04% 5,638 (6.38X) 12,644.4 (−1.14%) 76 2443.4 (2.50X)
b16 55 2,931 0.442 911 4,280.9 951.3 1.62X −0.84% 1,917 (2.10X) 4,235.5 (+1.05%) 4 1061.9 (1.11X)
b17 1,317 24,347 1.035 826 38,434.9 777.8 3.02X −3.26% 6,134 (7.42X) 39,005.5 (−1.48%) 125 1952.0 (2.51X)
b18 3,020 76,406 3.724 1,783 110,860.9 2,523.6 1.44X −1.63% 7,177 (4.03X) 111,254.8 (−0.35%) 16 3756.0 (1.49X)
b19 6,042 137,897 2.875 663 205,424.6 3,427.9 2,74X −0.89% 4,027 (6.07X) 206,406.4 (−0.47%) 24 9022.0 (2.63X)
b20 430 18,488 1.388 623 25,678.0 1,775.1 2.90X −3.31% 4,046 (6.49X) 26,479.2 (−3.12%) 86 5909.5 (3.33X)

Average 1.77X −1.38% 3.36X +0.30% 23.00 1.74X

the gate-sizing technique has improved the circuit lifetime
by 1.77X at the expense of 1.38% area overhead, although
some of this area overhead can be compensated according the
technique presented [6]. In contrast, our proposed approach has
improved the lifetime by 3.36X while it reduces the circuit
area by 0.30%. In fact, most of the area overhead imposed
by putting tighter constraints is compensated by looser ones.
An important point is that the lifetime provided by the gate-
sizing technique is always considerably shorter than that of the
proposed approach. Indeed, as mentioned earlier, gate-sizing
is just one of the techniques that commercial synthesis tools
consider during optimization. Since our proposed technique
exploits all these features, the lifetime results are always
superior to the pure gate-sizing ones.

The lifetime improvement of both gate-sizing and the
proposed approach mostly depends on how much one can
tighten the timing constraints of the paths with higher aging
rates. As a consequence, it can happen, that the lifetime
cannot be improved, if the design-time critical path (cannot be
designed faster) has also the highest aging rate. However, in
such a case, area can be significantly reduced by slowing down
all other paths. For example, the lifetime of b09 benchmark
cannot be improved as the design time most-critical path has
the highest aging rate. However, as shown in the table, the
proposed approach can reduce its area by 4.80%. In contrast,
for most of the benchmarks circuits (e.g. b15) a considerable
lifetime improvement is gained at the expense of a negligible
area overhead.

Figure 5 shows how lifetime is improved over optimization
iterations and how area is affected. As it can be seen, although
in some points lifetime decreases, its overall trend is increas-
ing. In the first few iterations, there is a considerable reduction
in the area as we can put lots of looser constraints, however,
in the later iterations, the lifetime is improved due to tighter
constraints at the expense of area penalty.

C. Runtime
In order to evaluate the scalability of the proposed approach

to optimize the circuit timing in aging-aware manner, the
runtimes of this approach and a pure guardbanding approach
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Fig. 5. a) Lifetime and b) area improvement for different optimization
iterations of b17 benchmark

are reported in Table I. All experiments are conducted on a
workstation with Intel Xeon E5540 2.53 GHz and 16 GB RAM.

For both guardbanding and the proposed approach, in the
beginning, we need to do a complete synthesis operation to
map the HDL description according to the synthesis library.
Extraction of SAIF files, power profile and temperature is also
done for both techniques once in advance. In guardbanding,
by running the STA analysis the circuit lifetime is extracted.
Our analysis shows that on average only 2.8% of the reported
runtime is due to the STA analysis and the remaining 97.2%
is used for initial computations. In the proposed approach,
after the initial computations, in each iteration application
profiles are extracted using our in-house tool, a STA analysis is
performed, new constraints are assigned, circuit optimizations
are done and at the end temperature is assigned accord-
ingly. Among these, the circuit optimization is the most time
consuming one. It should be noted that the runtime of the
proposed approach is highly dependant on the number of
iterations. However, for a specific circuit, the time needed for
some iterations might be several orders of magnitude lower
depending on how much effort Design Compiler should put to
satisfy the desired constraints.

As reported in Table I, the proposed approach has 1.74X



more runtime than the pure guardbanding. This means that
the complete synthesis and temperature extraction are still the
dominant parts in the aging computation. This is indicative of
the scalability of the proposed approach.

V. CONCLUSIONS

In this paper, an aging-aware synthesis approach is pre-
sented to address the design-challenges imposed by accelerated
transistor aging due to BTI and HCI. It iteratively optimizes
circuit timing with respect to post-aging delays in a way
that all paths reach the assigned guardband at the same time.
Experimental results on ITC99 benchmark circuits show that
the proposed approach can improved the lifetime by 3.36X
which is two times better than the state of the art gate-sizing
techniques. This approach has negligible impact on area and
its runtime is comparable with that of a pure-gurdbanding
technique, and hence, scales very well.
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