

Challenges and Solutions

- Problem
 - Large gap between CPU, memory and disk access times
 - Lack of rapid performance improvements in disk technology relates to the mechanical nature of the disk

	Access time
Processor	1-10 ns
Cache memory	10-100 ns
Main Memory	100-1000 ns
Magnetic disk	5-50 ms

- Solutions:
 - Decouple CPU performance and disk performance: caching
 - Increase storage device parallelism: disk arrays (RAID)

(c) 2014, Mehdi Tahoori

Reliable Computing I: Lecture 8

2

Cache Performance and Design Considerations

- Cache: a fast memory between the hosts and the disks where data is temporarily stored
- Recently accessed data is saved in the cache to improve read performance
- Write to cache and give control to the application before writing to disk
 - Nonvolatile memory to protect data against power failures
 - Ensure data consistency between cache and disk
- Cache performance measured by its miss rate
- Cache size
 - increasing the cache beyond its optimal size has diminishing returns
 - the miss rate decreases with increased cache size but stabilizes after a
 - manufactures typically offer caches between 0.1% and 0.3% of disk size

(c) 2014, Mehdi Tahoori

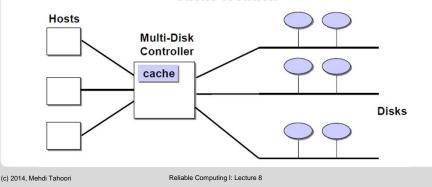
Reliable Computing I: Lecture 8

Cache Performance and Design Considerations

- Access behavior of the applications
 - temporal locality: a referenced data block tends to be referenced again in the near future
 - spatial locality: if a data block is referenced, then nearby data blocks will also soon be accessed
- Replacement algorithms
 - Random replacement (RR) easy to implement but poor performance
 - Least Recently Used (LRU) the most popular; exploits the temporal locality
 - Least Frequently Used (FRU) based on frequency of access count

(c) 2014. Mehdi Tahoori

Reliable Computing I: Lecture 8



Cache Performance and Design Considerations

- Read-ahead strategies: (prefetching)
 - exploits spatial locality by anticipating future requests to data and bringing the data to the cache

Cache location

RAID (Redundant Array of Inexpensive Disks)

- Disk Array: separate disks grouped into one logical disk
- Data striping for improving performance
 - data is distributed transparently over multiple disks to make them appear as a single fast, large disk
 - parallelism
 - independent requests can be serviced in parallel by separate disks
 - stripe unit: bit, byte, sector, track
- Redundancy for improving reliability
 - a large number of disks lowers the overall reliability of the disk
 - N disks have 1/N the reliability of a single disk (independent failures)
 - A 600 disk array with 300,000 hours MTTF for each disk will experience one failure every three weeks
- Data replication or parity encoding to tolerate disk failures

(c) 2014. Mehdi Tahoori

Reliable Computing I: Lecture 8

RAID-1: Mirrored Disks

- Mirroring (shadowing) is the simplest redundancy scheme
- Frequently used in database systems where availability and transaction rate are more important than storage efficiency
- All data are duplicated:
 - a complete backup is available when a disk fails
- Disks are grouped into mirror pairs: one copy of each data block stored on each disk in the pair
- High availability at the expense of a high storage overhead
 - #redundancy disks = #data disks
- Tolerates up to N/2 disk failures

Disk 0	Disk 1	Disk 2	Disk 3	Disk 4	Disk 5
D0	D0	D1	D1	D2	D2
D3	D3	D4	D4	D5	D5
D6	D6	D7	D7	D8	D8
D 9	D9	D10	D10	D11	D11

(c) 2014, Mehdi Tahoori

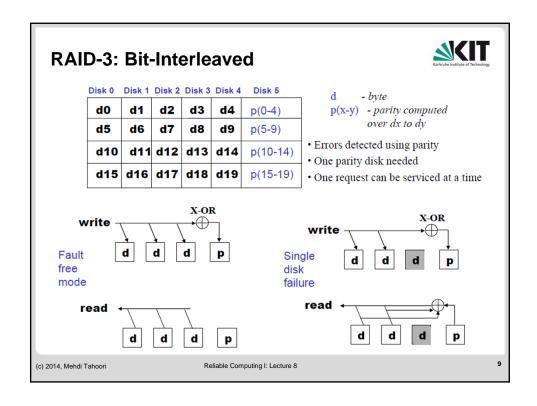
Reliable Computing I: Lecture 8

7

RAID-2: Hamming-coded

- Data striped in bits
- N data disks and G redundancy disks storing a Hamming error correcting code computed over the data stored in each stripe
- G ~ log(N+G): increase of storage efficiency as N increases
 - a single redundancy disk is sufficient to detect a single disk failure
 - but more disks are required to identify, which one has failed and to perform error correction
- Only one request can be serviced at a time:
 - each request (read/write) accesses all disks

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4, 5, 6


d0	d1	d2	d3	h0-3
d4	d5	d6	d7	h4-7
d8	d9	d10	d11	h8-11
d12	d13	d14	d15	h12-15

(c) 2014, Mehdi Tahoori

Reliable Computing I: Lecture 8

8

RAID-4: Block Interleaved

- Similar to RAID-3 except that data is striped in blocks instead of bits or bytes
- Striping unit is large
 - small reads access a single disk
- Several concurrent requests can be serviced in parallel
- The parity disk can become a bottleneck: parity is updated for each write

Disk 0 Dis	k 1 Disk	2 Disk 3	Disk 4	Disk 5
------------	----------	----------	--------	--------

DO	D1	D2	D3	D4	P0-4
D5	D6	D7	D 8	D9	P5-9
D 10	D11	D12	D 13	D14	P10-14
D15	D 16	D17	D 18	D 19	P15-19

D - data block
Px-y - parity computed
over Dx to Dy

(c) 2014, Mehdi Tahoori

Reliable Computing I: Lecture 8

RAID-5: Block Interleaved Distributed Parity

- Parity is distributed among all the disks to avoid the parity bottleneck
- Several possible parity distribution strategies
 - e.g., left-asymmetric distribution strategy
- Tolerates one disk failure

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

DO	D1	D2	D3	P0-3
D4	D5	D6	P4-7	D7
D8	D9	P8-11	D10	D11
D12	P12-15	D13	D14	D15
P16-19	D 16	D17	D18	D19

(c) 2014, Mehdi Tahoori

Reliable Computing I: Lecture 8

11

RAID-6: P+Q Redundancy

- P = parity Q = Reed-Solomon Code
- Tolerates the failure of up to two disks
- Higher availability but lower write performance compared to RAID-5
- Two redundancy disks (parity + Reed-Solomon code)

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk5

DO	D1	D2	D 3	P0-3	Q0-3
D6	D7	P4-7	Q4-7	D4	D5
P8-11	Q8-11	D8	D9	D10	D11
D12	D13	D14	D15	P12-15	Q12-15
D18	D19	P16-19	Q16-19	D16	D17

(c) 2014, Mehdi Tahoori

Reliable Computing I: Lecture 8

12