Instructor: M. Tahoori

Specific-Fault Oriented Test Generation

- Three Approaches
- Internal Line Values Assigned (D Algorithm) (Roth-1966)
- D-cubes
- Bridging faults
- Logic gate function change faults
- Input Values Assigned (PODEM) (Goel - 1981)
- X-Path-Check
- Path propagation constraints to limit ATPG search space
- Backtracing
- Input and Internal Values Assigned (FAN) (Fujiwara)
- Efficiently constrained backtarce

Fault Cone and D-frontier

- Fault Cone
- Set of hardware affected by fault
- D-frontier
- Set of gates closest to POs with fault effect(s) at input(s)

D Algorithm

D-Algorithm -- Roth IBM (1966)

- Fundamental concepts invented:
- First complete ATPG algorithm
- D-Cube
- D-Calculus
- Implications - forward and backward
- Implication stack
- Backtrack
- Test Search Space

D Algorithm

- Assigning internal line values
- Example:
- Test for Stuck-at-0 on Lower Input to Gate B
- Activate Fault - Put 1 on Faulty Lead

D Algorithm

- Example
- Test for Stuck-at-0 on Lower Input to Gate B
- Implication
- Record Effects of Previous Assignments

D Algorithm

- Propagation
- Select Path to Propagate D to Output
- Single versus Multiple Path Propagation

D Algorithm

- Propagation
- Assign Required Gate Input Values
- Os on other inputs of OR, NOR Gates with D or \bar{D} Input
- 1s on other inputs of AND, NAND Gates with D or \bar{D} Input

Line Justification

- Find Input Assignment to Place Value v on Line g
- Path Tracing Approach
- Propagate Signals using Element Functions
- Must Choose Element Input Values and Paths
- Primitive cube of an element (gate) with output Z
- List of prime implicants of Z and Z^{\prime}
AND

A	B	Z				
1	1	1				
0	-	0				
-	0	0	\quad	A	B	Z
:---	:---	:---				
1	1	0				
0	-	1				
-	0	1	\quad Implication (no choices)			

Decision (choices)

D Algorithm

- Line Justification
- Assign Required Gate Input Values
- 0 on lower input of C to give 0 on output

D Algorithm

- Implication
- Record Effects of Previous Assignments
- Test is $\mathrm{U}, \mathrm{V}, \mathrm{Y}, \mathrm{Z}=0,1,0, \mathrm{~d}$
- DIFFICULTY
- Internal Line Values May be Inconsistent

D Algorithm

- Example
- Test for Stuck-at-1 on Gate A Output
- Activate Fault
- Put 0 on Faulty Lead

D Algorithm

- Example
- Test for Stuck-at-1 on Gate A Output
- Implication
- Record Effects of Previous Assignments

D Algorithm

- Example
- Test for Stuck-at-1 on Gate A Output
- Propagation
- Select Path to Propagate D to Output

D Algorithm

- Propagation
- Assign Required Gate Input Values
- Os on other inputs of OR, NOR Gates with D or \bar{D} Input
- 1s on other inputs of AND, NAND Gates with D or \bar{D} Input

D Algorithm

- Example
- Test for Stuck-at-1 on Gate A Output
- Implication
- Record Effects of Previous Assignments

D Algorithm

- Example
- Test for Stuck-at-1 on Gate A Output
- Propagation
- Select Alternate Path to Propagate D to Output

D Algorithm

- Example
- Test for Stuck-at-1 on Gate A Output
- Implication
- Record Effects of Previous Assignments
- Test is $\mathrm{U}, \mathrm{V}, \mathrm{Y}, \mathrm{Z}=0,0,0,1$

D Calculus

Singular Cover

- Singular Cover
- Minimal set of input signal assignments to show essential prime implicants of Karnaugh map

Gate			Inputs			Output	Gate				nputs			Output
AND	A	B	d	NOR	d	e	F							
1	0	X	0	1	1	X	0							
2	X	0	0	2	X	1	0							
3	1	1	1	3	0	0	1							

D Algorithm

- D-Cube
- A collapsed truth table entry
- Example
- AND gate

D Algorithm

- D Intersection
- Defines how different D-cubes can coexist for different gates in logic circuit
- If one cube assigns a specific signal value, the other cubes must assign either that same value or X
- $1 \cap 1=1 \cap X=X \cap 1=1$
- $0 \cap 0=0 \cap X=X \cap 0=0$
- $\mathrm{X} \cap \mathrm{X}=\mathrm{X}$
ψ, ϕ represent incompatible assignments
μ, λ represent incompatibility if both present

\cap	0	1	X	D	$\overline{\mathrm{D}}$
0	0	ϕ	0	ψ	ψ
1	ϕ	1	1	ψ	ψ
X	0	1	X	D	$\overline{\mathrm{D}}$
D	ψ	ψ	$\overline{\mathrm{D}}$	μ	λ
$\overline{\mathrm{D}}$	ψ	ψ	D	λ	μ

D Algorithm

- Primitive D-cube of Failure (PDF)
- Models fault including
- SA1: represented by \bar{D}
- SA0: represented by D
- Example: AND gate
- PDF for output SAO is 11 D
- PDFs for output SA1 are $0 \times \overline{\mathrm{D}}, \times 0 \overline{\mathrm{D}}$
- Propagation D-cube
- Models conditions under which fault effect propagates through gate

Implication Procedure

1. Model fault with appropriate PDF
2. Select propagation D-cubes to propagate fault effect to a PO (D-drive procedure)
3. Select singular cover cubes to justify internal circuit signals (Consistency procedure)

- D Algorithm's main problem
- Selects cubes and singular covers arbitrarily

