

Testing Digital Systems I

Lecture 8:

Boolean Testing Using Fault Models (D Algorithm)

Instructor: M. Tahoori

Copyright 2010, M. Tahoori

TDS I: Lecture 8

1

Specific-Fault Oriented Test Generation

- Three Approaches
 - Internal Line Values Assigned (D Algorithm) (Roth-1966)
 - D-cubes
 - Bridging faults
 - Logic gate function change faults
 - Input Values Assigned (PODEM) (Goel 1981)
 - X-Path-Check
 - Path propagation constraints to limit ATPG search space
 - Backtracing
 - Input and Internal Values Assigned (FAN) (Fujiwara)
 - Efficiently constrained backtarce

Copyright 2010, M. Tahoori

TDS I: Lecture 8

2

D-Algorithm -- Roth IBM (1966)

- Fundamental concepts invented:
 - First complete ATPG algorithm
 - D-Cube
 - D-Calculus
 - Implications forward and backward
 - Implication stack
 - Backtrack
 - Test Search Space

Copyright 2010, M. Tahoori

TDS I: Lecture 8

5

D Algorithm

- Assigning internal line values
- Example:
 - Test for Stuck-at-0 on Lower Input to Gate B
 - Activate Fault Put 1 on Faulty Lead

Copyright 2010, M. Tahoori

TDS I: Lecture 8

D Algorithm

Propagation

Copyright 2010, M. Tahoori

- Assign Required Gate Input Values
- Os on other inputs of OR, NOR Gates with D or D Input
- 1s on other inputs of AND, NAND Gates with D or D Input

TDS I: Lecture 8

Line Justification

- Find Input Assignment to Place Value v on Line g
- Path Tracing Approach
 - Propagate Signals using Element Functions
 - Must Choose Element Input Values and Paths
- Primitive cube of an element (gate) with output Z
 - List of prime implicants of Z and Z'

	AND							
I	Α	В	Z					
I	1	1	1					
I	0	_	0					
	_	0	0					

Implication (no choices)

Decision (choices)

Copyright 2010, M. Tahoori

TDS I: Lecture 8

10

Testing Digital Systems I

D Algorithm

- D Intersection
 - Defines how different D-cubes can coexist for different gates in logic circuit
 - If one cube assigns a specific signal value, the other cubes must assign either that same value or X
 - $1 \cap 1 = 1 \cap X = X \cap 1 = 1$
 - $0 \cap 0 = 0 \cap X = X \cap 0 = 0$
 - X ∩ X = X

 ψ , ϕ represent incompatible assignments μ , λ represent incompatibility if both present

\cap	0	1	Χ	D	σĮ
0	0	ф	0	Ψ	Ψ
1	ф	1	1	Ψ	Ψ
X	Ó	1	X	Ď	
D	Ψ	Ψ	D	μ	λ
	Ψ	ψ	D	λ	μ

Copyright 2010, M. Tahoori

TDS I: Lecture 8

23

D Algorithm

- Primitive D-cube of Failure (PDF)
 - Models fault including
 - SA1: represented by D
 - SA0: represented by D
 - Example: AND gate
 - PDF for output SA0 is 1 1 D
 - PDFs for output SA1 are 0 X D, X 0 D
- Propagation D-cube
 - Models conditions under which fault effect propagates through gate

Copyright 2010, M. Tahoori

TDS I: Lecture 8

24

Implication Procedure

- Model fault with appropriate PDF
- Select propagation D-cubes to propagate fault effect to a PO (D-drive procedure)
- Select singular cover cubes to justify internal circuit signals (Consistency procedure)
- D Algorithm's main problem
 - Selects cubes and singular covers arbitrarily

Copyright 2010, M. Tahoori

TDS I: Lecture 8

25

