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Today’s Lecture

Concurrent error detection

Watchdog timers

Watchdog processor 

Heartbeats 

Consistency and capability checking 

Data audits 

Runtime generated assertions 
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Concurrent Error Detection (CED)

Employed during normal operation

Detect errors as they occur

Data integrity ensured

Correct outputs or

Error indicated for incorrect outputs

Fault-secure property
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General CED Structure

Function f

Output

Characteristic

Predictor

Input

Output

Checker

Error
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Output “Characteristics”

Output itself

Duplication

Output parity

Parity prediction

Residue

Residue codes

1s or 0s count in output word

Many others

All output characteristics are not equally effective
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CED Classification & Examples

Hardware Software

Application 
independent

Identical Duplication 
Diverse Duplication 

Parity Prediction 
Residue codes     
Multi-threading       

Watchdog processor

Duplicated instruction 
Identical or Diverse Data 

Control-flow checking       
N-version programs

Application 
specific

Compression, 
Encryption,          

Signal processing, 
RESO, …

Assertion checks 
Algorithm-based fault-

tolerance
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Duplication for CED

Two implementations: Identical or diverse

Widely used (aka duplex system)

e.g., IBM G5, G6 processors, shuttle

Issues

Common-mode failures, synchronization
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Fault Effects in Duplex Systems

Single module failure

Guaranteed data integrity

Multiple independent failures

Data integrity not guaranteed

Both modules generating identical errors

Very low probability

Common-mode failures

Data integrity not guaranteed

More frequent
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Common-Mode Failures (CMFs)

Multiple faults

Single cause

More probable than multiple independent failures

Examples

Power-supply dip, 

Single source radiation causing multiple upsets,

Design faults

Antidote for CMF

Design Diversity

Diverse implementations

Error effects caused by CMFs are different
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Watchdog Timer 

An inexpensive method of error detection 

Process being watched must reset the timer 

before the timer expires, 

otherwise the watched process is assumed as faulty 

Watchdog timers only detect errors which manifest 

themselves as a control-flow error such that the 

system does not continue to reset the timer 

Only processes with relatively deterministic 

runtimes can be checked, since the error detection 

is based entirely on the time between timer resets 
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Watchdog Timer 

A watchdog timer provides only an indication of 

possible process failure 

a partially failed process may still be able to reset the timer 

Coverage is limited, as neither the data nor the results 

are checked 

When used to reset the system, a watchdog timer can 

improve availability (the mean time to recovery is 

shortened) but not reliability (failures are just as likely 

to occur) 

when the availability of a system is more important than the 

loss of data, the use of a watchdog timer to reset the system 

on the detection of an error is an appropriate choice. 
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Example Applications of Watchdog Timers 

NASA’s Mars Pathfinder mission 

mars rover uses a real-time preemptive multithreaded operating 
system 

tasks scheduled based on priorities that reflect their relative urgency 

Major failure event: priority inversion between tasks with 
different priorities 

system deadlock 

Watchdog timer used to detect such scenario and restart the 
system 

full restart causes loss of data 

repetitive resets seriously limit the correct work of the system 

the problem eventually diagnosed as a software bug 

software patch reestablishes proper behavior 

A traditional system reset is a drastic but robust measure 
used in engineering practice 

availability of the system is more important than the lost data due 
to the system reset 
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Example Applications of Watchdog Timers 

Telephone Switch System 

External watchdog timers monitor correct program 

operation by triggering recovery when timers are not 

periodically reset 

Allows an early (before the error propagates) detection 

of problems caused by software errors and 

consequently easier recovery 
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Watchdog Processor & Control Flow 

Checking

Watchdog processor: “Simple” processor

Generalized version of watchdog timer

Program control flow checked

Assertion checks for computation errors

Can be integrated into the processor itself
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Structural Integrity Checking (SIC)

Program broken into basic blocks

Branch-free sequence of instructions

Unique signature for each basic block

Signatures explicitly transferred to watchdog

Signature sequence checked by watchdog

Automated at compiler level

Assignment of signatures 

Instructions to send signatures to the watchdog. 

Watchdog program can be automatically synthesized. 
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Structural Integrity Check Example
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i<10

Block 2

Block 1

J > 5

Block 4

Block 3

Block 1 signature

to watch-dog

Block 2 signature

Block 4 signature

Block 3 signature
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EDDI

Error Detection by Duplicated Instructions

Intended for transient computation errors

Duplicated Instructions

Master and shadow instructions

Master and shadow results compared

Transient errors in computations detected

Automated flow

Performance overhead: 13%-111%

Super-scalar processors advantageous

No dependency between master & shadow
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EDDI Example
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ADD R3, R1, R2 ; R3  R1 + R2

MUL R4, R3, R5 ; R4  R3 * R5

ST  0(SP), R4 ; store R4 in location 

pointed by SP

ADD R3, R1, R2 ; R3  R1 + R2 master

ADD R23, R21, R22 ; R23  R21 + R22 shadow

MUL R4, R3, R5 ; R4  R3 * R5 master

MUL R24, R23, R25 ; R24  R23 * R25 shadow

BNE R4, R24, ErrorHandler ; compare master and 

shadow results

ST  0(SP), R4 ; store master result

ST  offset(SP), R24 ; store shadow result
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Heartbeats 

A common approach to detecting process and 

node failures in a distributed (networked) 

computing environment. 

Periodically, a monitoring entity sends a message 

(a heartbeat) to a monitored node or process and 

waits for a reply. 

If the monitored node does not respond within a 

predefined timeout interval, the node is declared 

as failed and appropriate recovery action is 

initiated. 
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Heartbeats: Issues

The timeout period is pre-negotiated by the two 
parties or sometimes even hard-coded by the 
programmer 

The predefined timeout value cannot adapt to 
changes in network traffic or to load variability on 
individual nodes 

The monitored node is assumed to be healthy if it 
is able to respond to a heartbeat message 

Process/thread responding to the heartbeat 
message may operate correctly, while other 
processes/threads may be in a deadlock situation 
or operating incorrectly 
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Adaptive & Smart Heartbeat 
Adaptive heartbeat 

the timeout value used by the monitor process is not fixed but is periodically 
negotiated between the two parties to adapt to changes in the network traffic 
or node load. 

Smart heartbeat 

the entity being monitored excites a set of predefined checks to verify the 
robustness of the entire process and only then responds to the monitoring 
process 
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Capability Checking 
can be implemented as a 
hardware mechanism or can 
be part of the operating 
system (usually the case) 

access to objects (memory 
segments, I/O devices) is 
limited to users (processors 
or processes) with the proper 
authorization 

Examples: 
virtual address management 
(MMU usually has a 
capability check) 

permission vs. activity; if 
these are not valid, there is 
an error trap 

password checking 

Consistency Checks 
range check - confirms 
that a computed value is 
in a valid range, e.g., a 
computed probability must 
be in the range 0 to 1 

address checking - verifies 
that the address to 
accessed exists 

opcode checking - checks 
whether the instruction to 
be executed has one of 
defined (documented) 
opcodes

arithmetic overflow and 
underflow 

Consistency and Capability Checking 
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Data Audits 

Widely used in the telecommunications industry 

A broad range of custom and ad hoc application-level 
techniques for detecting and recovering from errors in a 
switching environment (in particular in a database). 

Data-specific techniques deeply embedded in the 
application can provide significant improvement in 
availability 

Static and Dynamic Data Check 
A corruption in static data region detected by computing a golden 
checksum of all static data at startup and comparing it with a 
periodically computed checksum (e.g., Cyclic Redundancy Code) 

For dynamic data, the range of allowable values for database fields 
are often stored in the database system catalog. This information is 
used to perform a range check on the dynamic fields in the 
database. 
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Data Audits: Structural Checks 

The structure of the database is established by 

header fields that precede the data portion in 

every record of each table. 

Structural audit calculates the offset of each 

record header from the beginning of the database 

based on record sizes stored in system tables (all 

record sizes are fixed and known). 

The database structure (in particular, the 

alignment of each record and table within the 

database) is checked by comparing all header 

fields at computed offsets with expected values. 
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Data Audits

Semantic Referential Integrity Check

Traces logical relationships among records in different 

tables to verify the consistency of the logical loops 

formed by the record(s) 

Detects resource leaks 

Corruption of key attributes in a database leads to lost 

records, i.e., records participating in semantic 

relationships disappear without being properly updated 
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Runtime Generated Assertions

Goals 
Generate runtime assertions by monitoring the values of selected 
variables in a program 

Use the monitored data to abstract out, via statistical pattern 
recognition techniques, the key relationships between the 
variables, separately and jointly, and to establish their probabilistic 
behavior 

Approach 
Identify clusters of values traversed by different variables 

Use this information to automatically generate runtime assertions 
capable of capturing abnormal behavior of an application due to 
hardware or software errors 

Cross-check with other entities in the system their views on the 
state of selected variables 

if a variable is globally accessible, then multiple entities (e.g., multiple 
execution threads) may have their own opinions about the correct value of 
the variable 

can improve coverage and reduce false alarms 
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Control-flow Monitoring Using Signatures

Hardware Approaches 

Employ a Watchdog (a simple co-processor) to monitor 
behavior of a Main Processor 

Suitable for a single embedded applications with little or no 
caching 

Limited applicability in off-the-shelf systems, as require 
additional specialized resources, e.g., watchdog, pre-
compiler. 
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Control-flow Monitoring Using Signatures

Hardware Approaches 

Embedded Signature Monitoring 

Pre-computed signature embedded in the application program 

Recompilation of existing programs 

Performance degradation of application 

Autonomous Signature Monitoring 

Watchdog Processor stores pre-computed signature in the 

memory and mimics the control flow of application 

Watchdog Processor rather complex 

High memory overhead 
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Control-flow Monitoring Using Signatures 

Software Approaches 

Software techniques partition the application into 

blocks, either in the assembly language or in the high-

level language 

Appropriate instrumentation inserted at the beginning 

and/or end of the blocks 

The checking code is inserted in the instruction stream 

eliminating the need for a hardware watchdog 

processor 

Two classes of approaches 

non-preemptive signature checking 

preemptive signature checking 
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Problems with Control Flow Signatures 
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Preemptive Control Signatures (PECOS) 

PECOS determines the runtime target address and compares 
that against the valid addresses before the jump to the target 
address is made 

executing instructions from an invalid target location is unlikely 

High-level control structure of Assertion Block 

1.Determine the runtime target address [= Xout]. 

2.Extract the list of valid target addresses [= {X1,X2}]. 

3.Calculate ID := Xout * 1/P, 

where, P = ![(Xout-X1) * (Xout-X2)] 

Calculation of ID to raise a DIV-BY-ZERO exception in case of 
error 

Can handle single (jumps) or multiple (branches, calls, and 
returns) target addresses 

Assertion Block does not introduce any new control flow 
instruction 
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PECOS

What Can We Cover with Preemptive Software Control 
Signature?

Solution: Insert programmable error detection core into the CPU 
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