
Reliable Computing I – Lecture 9

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association

INSTITUTE OF COMPUTER ENGINEERING (ITEC) – CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC)

www.kit.edu

Reliable Computing I

Lecture 9: Concurrent Error Detection

Instructor: Mehdi Tahoori

Reliable Computing I: Lecture 9

Today’s Lecture

Concurrent error detection

Watchdog timers

Watchdog processor

Heartbeats

Consistency and capability checking

Data audits

Runtime generated assertions

2(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 9

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 9

Concurrent Error Detection (CED)

Employed during normal operation

Detect errors as they occur

Data integrity ensured

Correct outputs or

Error indicated for incorrect outputs

Fault-secure property

(c) 2018, Mehdi Tahoori 3

Reliable Computing I: Lecture 9

General CED Structure

Function f

Output

Characteristic

Predictor

Input

Output

Checker

Error

(c) 2018, Mehdi Tahoori 4

Reliable Computing I – Lecture 9

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 9

Output “Characteristics”

Output itself

Duplication

Output parity

Parity prediction

Residue

Residue codes

1s or 0s count in output word

Many others

All output characteristics are not equally effective

(c) 2018, Mehdi Tahoori 5

Reliable Computing I: Lecture 9

CED Classification & Examples

Hardware Software

Application
independent

Identical Duplication
Diverse Duplication

Parity Prediction
Residue codes
Multi-threading

Watchdog processor

Duplicated instruction
Identical or Diverse Data

Control-flow checking
N-version programs

Application
specific

Compression,
Encryption,

Signal processing,
RESO, …

Assertion checks
Algorithm-based fault-

tolerance

(c) 2018, Mehdi Tahoori 6

Reliable Computing I – Lecture 9

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 9

Duplication for CED

Two implementations: Identical or diverse

Widely used (aka duplex system)

e.g., IBM G5, G6 processors, shuttle

Issues

Common-mode failures, synchronization

7(c) 2018, Mehdi Tahoori

Primary Outputs

Error

f

f

C
o

m
p

a
re

Reliable Computing I: Lecture 9

Fault Effects in Duplex Systems

Single module failure

Guaranteed data integrity

Multiple independent failures

Data integrity not guaranteed

Both modules generating identical errors

Very low probability

Common-mode failures

Data integrity not guaranteed

More frequent

8(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 9

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 9

Common-Mode Failures (CMFs)

Multiple faults

Single cause

More probable than multiple independent failures

Examples

Power-supply dip,

Single source radiation causing multiple upsets,

Design faults

Antidote for CMF

Design Diversity

Diverse implementations

Error effects caused by CMFs are different

9(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 9

Watchdog Timer

An inexpensive method of error detection

Process being watched must reset the timer

before the timer expires,

otherwise the watched process is assumed as faulty

Watchdog timers only detect errors which manifest

themselves as a control-flow error such that the

system does not continue to reset the timer

Only processes with relatively deterministic

runtimes can be checked, since the error detection

is based entirely on the time between timer resets

10(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 9

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 9

Watchdog Timer

A watchdog timer provides only an indication of

possible process failure

a partially failed process may still be able to reset the timer

Coverage is limited, as neither the data nor the results

are checked

When used to reset the system, a watchdog timer can

improve availability (the mean time to recovery is

shortened) but not reliability (failures are just as likely

to occur)

when the availability of a system is more important than the

loss of data, the use of a watchdog timer to reset the system

on the detection of an error is an appropriate choice.

11(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 9

Example Applications of Watchdog Timers

NASA’s Mars Pathfinder mission

mars rover uses a real-time preemptive multithreaded operating
system

tasks scheduled based on priorities that reflect their relative urgency

Major failure event: priority inversion between tasks with
different priorities

system deadlock

Watchdog timer used to detect such scenario and restart the
system

full restart causes loss of data

repetitive resets seriously limit the correct work of the system

the problem eventually diagnosed as a software bug

software patch reestablishes proper behavior

A traditional system reset is a drastic but robust measure
used in engineering practice

availability of the system is more important than the lost data due
to the system reset

12(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 9

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 9

Example Applications of Watchdog Timers

Telephone Switch System

External watchdog timers monitor correct program

operation by triggering recovery when timers are not

periodically reset

Allows an early (before the error propagates) detection

of problems caused by software errors and

consequently easier recovery

13(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 9

Watchdog Processor & Control Flow

Checking

Watchdog processor: “Simple” processor

Generalized version of watchdog timer

Program control flow checked

Assertion checks for computation errors

Can be integrated into the processor itself

14(c) 2018, Mehdi Tahoori

Processor

Memory
Watchdog

processor

Reliable Computing I – Lecture 9

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 9

Structural Integrity Checking (SIC)

Program broken into basic blocks

Branch-free sequence of instructions

Unique signature for each basic block

Signatures explicitly transferred to watchdog

Signature sequence checked by watchdog

Automated at compiler level

Assignment of signatures

Instructions to send signatures to the watchdog.

Watchdog program can be automatically synthesized.

15(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 9

Structural Integrity Check Example

16(c) 2018, Mehdi Tahoori

i<10

Block 2

Block 1

J > 5

Block 4

Block 3

Block 1 signature

to watch-dog

Block 2 signature

Block 4 signature

Block 3 signature

Reliable Computing I – Lecture 9

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 9

EDDI

Error Detection by Duplicated Instructions

Intended for transient computation errors

Duplicated Instructions

Master and shadow instructions

Master and shadow results compared

Transient errors in computations detected

Automated flow

Performance overhead: 13%-111%

Super-scalar processors advantageous

No dependency between master & shadow

17(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 9

EDDI Example

18(c) 2018, Mehdi Tahoori

ADD R3, R1, R2 ; R3 R1 + R2

MUL R4, R3, R5 ; R4 R3 * R5

ST 0(SP), R4 ; store R4 in location

pointed by SP

ADD R3, R1, R2 ; R3 R1 + R2 master

ADD R23, R21, R22 ; R23 R21 + R22 shadow

MUL R4, R3, R5 ; R4 R3 * R5 master

MUL R24, R23, R25 ; R24 R23 * R25 shadow

BNE R4, R24, ErrorHandler ; compare master and

shadow results

ST 0(SP), R4 ; store master result

ST offset(SP), R24 ; store shadow result

Reliable Computing I – Lecture 9

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 9

Heartbeats

A common approach to detecting process and

node failures in a distributed (networked)

computing environment.

Periodically, a monitoring entity sends a message

(a heartbeat) to a monitored node or process and

waits for a reply.

If the monitored node does not respond within a

predefined timeout interval, the node is declared

as failed and appropriate recovery action is

initiated.

19(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 9

Heartbeats: Issues

The timeout period is pre-negotiated by the two
parties or sometimes even hard-coded by the
programmer

The predefined timeout value cannot adapt to
changes in network traffic or to load variability on
individual nodes

The monitored node is assumed to be healthy if it
is able to respond to a heartbeat message

Process/thread responding to the heartbeat
message may operate correctly, while other
processes/threads may be in a deadlock situation
or operating incorrectly

20(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 9

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 9

Adaptive & Smart Heartbeat
Adaptive heartbeat

the timeout value used by the monitor process is not fixed but is periodically
negotiated between the two parties to adapt to changes in the network traffic
or node load.

Smart heartbeat

the entity being monitored excites a set of predefined checks to verify the
robustness of the entire process and only then responds to the monitoring
process

21(c) 2018, Mehdi Tahoori

Capability Checking
can be implemented as a
hardware mechanism or can
be part of the operating
system (usually the case)

access to objects (memory
segments, I/O devices) is
limited to users (processors
or processes) with the proper
authorization

Examples:
virtual address management
(MMU usually has a
capability check)

permission vs. activity; if
these are not valid, there is
an error trap

password checking

Consistency Checks
range check - confirms
that a computed value is
in a valid range, e.g., a
computed probability must
be in the range 0 to 1

address checking - verifies
that the address to
accessed exists

opcode checking - checks
whether the instruction to
be executed has one of
defined (documented)
opcodes

arithmetic overflow and
underflow

Consistency and Capability Checking

22(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 9

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 9

Data Audits

Widely used in the telecommunications industry

A broad range of custom and ad hoc application-level
techniques for detecting and recovering from errors in a
switching environment (in particular in a database).

Data-specific techniques deeply embedded in the
application can provide significant improvement in
availability

Static and Dynamic Data Check
A corruption in static data region detected by computing a golden
checksum of all static data at startup and comparing it with a
periodically computed checksum (e.g., Cyclic Redundancy Code)

For dynamic data, the range of allowable values for database fields
are often stored in the database system catalog. This information is
used to perform a range check on the dynamic fields in the
database.

23(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 9

Data Audits: Structural Checks

The structure of the database is established by

header fields that precede the data portion in

every record of each table.

Structural audit calculates the offset of each

record header from the beginning of the database

based on record sizes stored in system tables (all

record sizes are fixed and known).

The database structure (in particular, the

alignment of each record and table within the

database) is checked by comparing all header

fields at computed offsets with expected values.

24(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 9

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 9

Data Audits

Semantic Referential Integrity Check

Traces logical relationships among records in different

tables to verify the consistency of the logical loops

formed by the record(s)

Detects resource leaks

Corruption of key attributes in a database leads to lost

records, i.e., records participating in semantic

relationships disappear without being properly updated

25(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 9

Runtime Generated Assertions

Goals
Generate runtime assertions by monitoring the values of selected
variables in a program

Use the monitored data to abstract out, via statistical pattern
recognition techniques, the key relationships between the
variables, separately and jointly, and to establish their probabilistic
behavior

Approach
Identify clusters of values traversed by different variables

Use this information to automatically generate runtime assertions
capable of capturing abnormal behavior of an application due to
hardware or software errors

Cross-check with other entities in the system their views on the
state of selected variables

if a variable is globally accessible, then multiple entities (e.g., multiple
execution threads) may have their own opinions about the correct value of
the variable

can improve coverage and reduce false alarms

26(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 9

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 9

Control-flow Monitoring Using Signatures

Hardware Approaches

Employ a Watchdog (a simple co-processor) to monitor
behavior of a Main Processor

Suitable for a single embedded applications with little or no
caching

Limited applicability in off-the-shelf systems, as require
additional specialized resources, e.g., watchdog, pre-
compiler.

27(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 9

Control-flow Monitoring Using Signatures

Hardware Approaches

Embedded Signature Monitoring

Pre-computed signature embedded in the application program

Recompilation of existing programs

Performance degradation of application

Autonomous Signature Monitoring

Watchdog Processor stores pre-computed signature in the

memory and mimics the control flow of application

Watchdog Processor rather complex

High memory overhead

28(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 9

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 9

Control-flow Monitoring Using Signatures

Software Approaches

Software techniques partition the application into

blocks, either in the assembly language or in the high-

level language

Appropriate instrumentation inserted at the beginning

and/or end of the blocks

The checking code is inserted in the instruction stream

eliminating the need for a hardware watchdog

processor

Two classes of approaches

non-preemptive signature checking

preemptive signature checking

29(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 9

Problems with Control Flow Signatures

30(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 9

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 9

Preemptive Control Signatures (PECOS)

PECOS determines the runtime target address and compares
that against the valid addresses before the jump to the target
address is made

executing instructions from an invalid target location is unlikely

High-level control structure of Assertion Block

1.Determine the runtime target address [= Xout].

2.Extract the list of valid target addresses [= {X1,X2}].

3.Calculate ID := Xout * 1/P,

where, P = ![(Xout-X1) * (Xout-X2)]

Calculation of ID to raise a DIV-BY-ZERO exception in case of
error

Can handle single (jumps) or multiple (branches, calls, and
returns) target addresses

Assertion Block does not introduce any new control flow
instruction

31(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 9

PECOS

What Can We Cover with Preemptive Software Control
Signature?

Solution: Insert programmable error detection core into the CPU

32(c) 2018, Mehdi Tahoori

