

CED Classification & Examples			
	Hardware	Software	
Application independent	Identical Duplication Diverse Duplication Parity Prediction Residue codes Multi-threading Watchdog processor	Duplicated instruction Identical or Diverse Data Control-flow checking N-version programs	

Assertion checks	
Algorithm-based fault-	
tolerance	

6

(c) 2018, Mehdi Tahoori

Application

specific

Reliable Computing I: Lecture 9

Compression,

Encryption, Signal processing, RESO, ...

14

- Assertion checks for computation errors
- Can be integrated into the processor itself

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

EDDI Example		
ADD R3, R1, R2	; R3 \leftarrow R1 + R2	
MUL R4, R3, R5	; R4 ← R3 * R5	
ST 0(SP), R4	; store R4 in location	
	pointed by SP	
ADD R3, R1, R2	; R3 \leftarrow R1 + R2 master	
ADD R23, R21, R22	; R23 \leftarrow R21 + R22 shadow	
MUL R4, R3, R5	; R4 \leftarrow R3 * R5 master	
MUL R24, R23, R25	; R24 ← R23 * R25 shadow	
BNE R4, R24, ErrorHandler	; compare master and shadow results	
ST 0(SP), R4	; store master result	
ST offset(SP), R24	; store shadow result	

(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 9

19

Heartbeats

- A common approach to detecting process and node failures in a distributed (networked) computing environment.
- Periodically, a monitoring entity sends a message (*a heartbeat*) to a monitored node or process and waits for a reply.
- If the monitored node does not respond within a predefined timeout interval, the node is declared as failed and appropriate recovery action is initiated.

(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 9

Adaptive & Smart Heartbeat

- Adaptive heartbeat
 - the timeout value used by the monitor process is not fixed but is periodically negotiated between the two parties to adapt to changes in the network traffic or node load.
- Smart heartbeat
 - the entity being monitored excites a set of predefined checks to verify the robustness of the entire process and only then responds to the monitoring process

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

