
Reliable Computing I – Lecture 7

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association

INSTITUTE OF COMPUTER ENGINEERING (ITEC) – CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC)

www.kit.edu

Reliable Computing I

Lecture 7: Information Redundancy-2

Instructor: Mehdi Tahoori

Reliable Computing I: Lecture 7

Today’s Lecture

2(c) 2018, Mehdi Tahoori

Codes for storage and communication

Cyclic codes

Reed-Solomon codes

Arithmetic codes

Self-checking logic

Reliable Computing I – Lecture 7

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 7

Codes for Storage and Communication

Cyclic codes are parity check codes with additional
property that cyclic shift of codeword is also a codeword

if (Cn-1, Cn-2 ... C1, C0) is a codeword, (Cn-2, Cn-3, ... C0, Cn-1)
is also a codeword

Cyclic codes are used in
sequential storage devices, e.g. tapes, disks, and data links

communication applications

An (n,k) cyclic code can detect single bit errors, multiple
adjacent bit errors affecting fewer than (n-k) bits, and burst
transient errors

Cyclic codes require less hardware, in form of linear
feedback shift registers

parity check codes require complex encoding, decoding circuit
using arrays of EX-OR gates, AND gates, etc.

3(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 7

Cyclic Code and Polynomials

Cyclic codes depend on the representation of data by
a polynomial

If (Cn-1, Cn-2 ... C1, C0) is a codeword, its polynomial
representation is C(x)= Cn-1 xn-1 + Cn-2x

n-2 + ... C1x + C0

Cyclic codes are characterized by their generator
polynomial g(x)

g(x) is a polynomial of degree (n-k) for an (n,k) code,
with a unity coefficient in (n-k) term

g(x) is a factor of xn-1, i.e., it divides it with zero
remainder

if a polynomial with degree n-k divides xn-1, then g(x)
generates a cyclic code

Example: for (7,4) code, g(x) = x3 + x + 1

4(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 7

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 7

Cyclic Redundancy Check (CRC)

Considers dataword and codeword to be polynomials

E.g., i0, i1, i2, … , in-1 i0 + i1X + i2X
2 + … + in-1X

n-1

Codeword = Dataword * Generator

C(X) = D(X) * g(X)

g(X) is pre-defined CRC polynomial

depends on particular code

Additions performed during multiplication are mod2

0+0 = 0, 0+1 = 1+0 = 1, 1+1 = 0

At receiver, divide n-bit codeword by CRC polynomial

D(X) = C(X) / g(X)

If remainder is non-zero, we’ve detected an error

5(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 7

Basic Operations on Polynomials

Can multiply or divide one polynomial by another,

follow modulo 2 arithmetic, coefficients are 1 or 0,

and addition and subtraction are same

6(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 7

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 7

Cyclic Code - Example

Consider generator polynomial g(x) =x3 + x + 1 for

(7,4) code

Can verify g(x) divides x7 -1

Given data word (1111), generate codeword

d(x) =x3 + x2 + x + 1

Then c(x) = g(x)d(x) = (x3 + x2 + x + 1) (x3 + x + 1)

= x6 + x5 + x3 + 1

Hence code word is (1101001)

7(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 7

CRC Properties and Varieties

An n-bit CRC check can detect all errors of less

than n bits and all but 1 in 2n multi-bit errors

Examples:

CRC-12: g(X) = X12+X11+X3+X2+X+1

CRC-16: g(X) = X16+X15+X2+1

Ethernet uses CRC-32

More bits better error detection capability

8(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 7

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 7

Circuit to Generate Cyclic Code

Consider blocks labeled X as multipliers, and addition

elements as modulo 2

Another representation is to replace multipliers by storage

elements, adders by EX-OR gates

9(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 7

Generation of Code Words

10(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 7

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 7

Decoding of Cyclic Codes

Determine if code word (rn-1, rn-2,, r1, r0) is valid

Code polynomial r(x) = rn-1 xn-1 + rn-2x
n-2 + ... r1x +r0

If r(x) is a valid code polynomial, it should be a

multiple generator polynomial g(x)

r(x) = d(x) g(x) + s(x), where s(x) the syndrome

polynomial should be zero

Hence, divide r(x) by g(x) and check the

remainder whether equal to 0

11(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 7

Circuits for Decoding

12(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 7

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 7

Example Decoding

13(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 7

Systematic Cyclic Codes

Previous cyclic codes were not systematic, i.e.

data not part of code word

To generate (n,k) systematic cyclic code, do the

following:

Multiply d(x) by xn-k, this is accomplished by shifting d(x)

n-k bits

The code polynomial is c(x) = r(x) + xn-k d(x)

Hence xn-k d(x) + r(x) = g(x)q(x), which is code word c(x)

since it is a multiple of g(x)

14(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 7

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 7

Example of Systematic Cyclic Code

Generator polynomial g(x) = x4 + x3 + x2 + 1 of (7,3) code

Data is 3 bits, n-k = 4 bits

15(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 7

Reed-Solomon Codes

Popular ECC for CDs, DVDs, wireless
communications, etc.

k data symbols, each of which is s bits

r parity symbols, each of which is also s bits

Can correct up to r/2 symbols that contain errors

Or can correct up to r symbol erasures

Erasure = error in a known symbol

Denoted by RS(n,k)

Common example: RS(255, 223) with s=8

n = 255 255 codeword bytes

k = 223 223 dataword bytes

r = 32 can correct errors in ≤ 16 bytes

16(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 7

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 7

Reed-Solomon Codes,

There exist many flavors of RS codes, each of

which is tailored to specific purpose

Cross-Interleaved Reed-Solomon Coding (CIRC) used

in CDs can correct error burst of up to 4000 bits!

4000 bits is roughly equivalent to 2.5mm on the CD

surface

RS codes are best for bursty error model

Just as good at handling 1 error in symbol or s errors in

symbol

Codewords created by multiplying datawords with

generator polynomial (like CRC)

17(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 7

Checksum Codes - Basic Concepts

The checksum is appended to block data when such

blocks are transferred

18(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 7

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 7

Single Precision Checksums

19(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 7

Double Precision Checksums

Compute 2n-bit checksum for a block of n-bit words

Overflow is still a concern, but it is now overflow from a 2n-

bits

20(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 7

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 7

Honeywell Checksums

Concatenate consecutive words to form double words to

create k/2 words of 2n bits; checksum formed over newly

structured data

21(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 7

Residue Checksums

The same concept as the single-precision checksum

except that the carry bit is not ignored and is added to

checksum in an end-around carry fashion

22(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 7

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 7

Arithmetic Codes

Useful to check arithmetic operations

Parity codes are not preserved under addition,

subtraction

Arithmetic codes can be

Separate: check symbols disjoint from data symbols

Non-separate: combined check and data

Several Arithmetic codes

AN codes, Residue codes, Bi-residue codes

Arithmetic codes have been used in STAR fault

tolerant computer for space applications

23(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 7

AN codes

Data X is multiplied by check base A to form A.X

Addition of code words performed modulo M where A

divides M

A(X + MY) = AX + M AY

Check operation by dividing the result by A

If result = 0, no error, else error

24(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 7

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 7

Example of 3N Code

25(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 7

Residue Codes

Separate code (X, X Mod A)

Created by appending the residue of a number to that

number

26(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 7

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 7

Berger Codes

Used in Control units as systematic codes

The k check bits are the binary encoding of the number of

zeros in the d-bit dataword

Berger codes are formed by appending k = log2 (d+1) check bits

and n = d + k

Example:

X=1 0 0 1 0 0 0 1 => k = log2 (8+1) = 4

the number of 1s in this data is 3 (0011)

the complement of (0011) is (1100)

the resulting code word is: 1001 0001 1100

27(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 7

Berger Codes

Can detect all single-bit errors and all

unidirectional multi-bit errors

Unidirectional: all bit errors are either from 01 or from

1 0

Good for detecting coupling faults

Change in one bit erroneously causes change(s) in

other bit(s)

Models short circuits (including bridging faults)

28(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 7

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 7

Self-Checking Circuits

What properties/invariants can we build into circuits such
that codeword inputs do not lead to codeword outputs in
the presence of faults?

Self-testing circuit
for every fault from a prescribed set there exists at least one valid
input code word that will produce an invalid output code word when
a single fault is present in the circuit

Fault secure circuit
any single fault from a prescribed set results in the circuit either
producing the correct code word or producing a non-code word, for
any valid input code word

Totally self-checking circuit (TSC)
the circuit is both fault secure and self-testing

all single faults are detectable by at least one valid code word
input, and when a given input combination does not detect the
fault, the output is the correct code word output

29(c) 2018, Mehdi Tahoori

Reliable Computing I: Lecture 7

Circuit of Basic TSC Comparison Element

30(c) 2018, Mehdi Tahoori

Reliable Computing I – Lecture 7

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 7

Implementing EDC/ECC in Hardware

Where does EDC/ECC get used?
Disk, CD-ROM

Memory (DRAM, SRAM)

Buses

Network

Tradeoff between EDC and ECC

ECC: Forward error recovery
Often on critical path, so can slow down even fault-free
system

EDC: Backward error recovery
Detecting error leads to recovery (can be slow)

So would you use ECC or EDC in your L1 cache?
How about in DRAM?

31(c) 2018, Mehdi Tahoori

