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Codes for Storage and Communication 

Cyclic codes are parity check codes with additional 
property that cyclic shift of codeword is also a codeword

if (Cn-1, Cn-2 ... C1, C0) is a codeword, (Cn-2, Cn-3, ... C0, Cn-1) 
is also a codeword

Cyclic codes are used in
sequential storage devices, e.g. tapes, disks, and data links

communication applications

An (n,k) cyclic code can detect single bit errors, multiple 
adjacent bit errors affecting fewer than (n-k) bits, and burst 
transient errors

Cyclic codes require less hardware, in form of linear 
feedback shift registers

parity check codes require complex encoding, decoding circuit 
using arrays of EX-OR gates, AND gates, etc.
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Cyclic Code and Polynomials

Cyclic codes depend on the representation of data by 
a polynomial 

If (Cn-1, Cn-2 ... C1, C0) is a codeword, its polynomial 
representation is C(x)= Cn-1 xn-1 + Cn-2x

n-2 + ... C1x + C0

Cyclic codes are characterized by their generator 
polynomial g(x)

g(x) is a polynomial of degree (n-k) for an (n,k) code, 
with a unity coefficient in (n-k) term 

g(x) is a factor of xn-1, i.e., it divides it with zero 
remainder 

if a polynomial with degree n-k divides xn-1, then g(x) 
generates a cyclic code 

Example: for (7,4) code, g(x) = x3 + x + 1 
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Cyclic Redundancy Check (CRC)

Considers dataword and codeword to be polynomials

E.g., i0, i1, i2, … , in-1  i0 + i1X + i2X
2 + … + in-1X

n-1

Codeword = Dataword * Generator

C(X) = D(X) * g(X)

g(X) is pre-defined CRC polynomial 

depends on particular code

Additions performed during multiplication are mod2

0+0 = 0, 0+1 = 1+0 = 1, 1+1 = 0

At receiver, divide n-bit codeword by CRC polynomial

D(X) = C(X) / g(X)

If remainder is non-zero, we’ve detected an error
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Basic Operations on Polynomials

Can multiply or divide one polynomial by another, 

follow modulo 2 arithmetic, coefficients are 1 or 0, 

and addition and subtraction are same 
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Cyclic Code - Example 

Consider generator polynomial g(x) =x3 + x + 1 for 

(7,4) code 

Can verify g(x) divides x7 -1 

Given data word (1111), generate codeword

d(x) =x3 + x2 + x + 1 

Then c(x) = g(x)d(x) = (x3 + x2 + x + 1) (x3 + x + 1) 

= x6 + x5 + x3 + 1 

Hence code word is (1101001) 
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CRC Properties and Varieties

An n-bit CRC check can detect all errors of less 

than n bits and all but 1 in 2n multi-bit errors

Examples:

CRC-12: g(X) = X12+X11+X3+X2+X+1

CRC-16: g(X) = X16+X15+X2+1

Ethernet uses CRC-32

More bits  better error detection capability
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Circuit to Generate Cyclic Code 

Consider blocks labeled X as multipliers, and addition 

elements as modulo 2 

Another representation is to replace multipliers by storage 

elements, adders by EX-OR gates 
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Generation of Code Words
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Decoding of Cyclic Codes

Determine if code word (rn-1, rn-2, ....., r1, r0) is valid 

Code polynomial r(x) = rn-1 xn-1 + rn-2x
n-2 + ... r1x +r0

If r(x) is a valid code polynomial, it should be a 

multiple generator polynomial g(x) 

r(x) = d(x) g(x) + s(x), where s(x) the syndrome 

polynomial should be zero 

Hence, divide r(x) by g(x) and check the 

remainder whether equal to 0 
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Circuits for Decoding 
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Example Decoding 
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Systematic Cyclic Codes

Previous cyclic codes were not systematic, i.e. 

data not part of code word 

To generate (n,k) systematic cyclic code, do the 

following: 

Multiply d(x) by xn-k, this is accomplished by shifting d(x) 

n-k bits 

The code polynomial is c(x) = r(x) + xn-k d(x) 

Hence xn-k d(x) + r(x) = g(x)q(x), which is code word c(x) 

since it is a multiple of g(x) 
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Example of Systematic Cyclic Code

Generator polynomial g(x) = x4 + x3 + x2 + 1 of (7,3) code 

Data is 3 bits, n-k = 4 bits 
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Reed-Solomon Codes

Popular ECC for CDs, DVDs, wireless 
communications, etc.

k data symbols, each of which is s bits

r parity symbols, each of which is also s bits

Can correct up to r/2 symbols that contain errors

Or can correct up to r symbol erasures

Erasure = error in a known symbol

Denoted by RS(n,k)

Common example: RS(255, 223) with s=8

n = 255  255 codeword bytes

k = 223  223 dataword bytes

r = 32  can correct errors in ≤ 16 bytes
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Reed-Solomon Codes,

There exist many flavors of RS codes, each of 

which is tailored to specific purpose

Cross-Interleaved Reed-Solomon Coding (CIRC) used 

in CDs can correct error burst of up to 4000 bits!

4000 bits is roughly equivalent to 2.5mm on the CD 

surface

RS codes are best for bursty error model

Just as good at handling 1 error in symbol or s errors in 

symbol

Codewords created by multiplying datawords with 

generator polynomial (like CRC)
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Checksum Codes - Basic Concepts 

The checksum is appended to block data when such 

blocks are transferred 
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Single Precision Checksums
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Double Precision Checksums

Compute 2n-bit checksum for a block of n-bit words 

Overflow is still a concern, but it is now overflow from a 2n-

bits 
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Honeywell Checksums

Concatenate consecutive words to form double words to 

create k/2 words of 2n bits; checksum formed over newly 

structured data
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Residue Checksums

The same concept as the single-precision checksum 

except that the carry bit is not ignored and is added to 

checksum in an end-around carry fashion 
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Arithmetic Codes 

Useful to check arithmetic operations 

Parity codes are not preserved under addition, 

subtraction 

Arithmetic codes can be 

Separate: check symbols disjoint from data symbols

Non-separate:  combined check and data 

Several Arithmetic codes 

AN codes, Residue codes, Bi-residue codes 

Arithmetic codes have been used in STAR fault 

tolerant computer for space applications 
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AN codes 

Data X is multiplied by check base A to form A.X

Addition of code words performed modulo M where A 

divides M 

A(X + MY) = AX + M AY 

Check operation by dividing the result by A 

If result = 0, no error, else error 
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Example of 3N Code 
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Residue Codes 

Separate code (X, X Mod A) 

Created by appending the residue of a number to that 

number 
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Berger Codes 

Used in Control units as systematic codes 

The k check bits are the binary encoding of the number of 

zeros in the d-bit dataword

Berger codes are formed by appending k = log2 (d+1) check bits 

and n = d + k 

Example: 

X=1 0 0 1 0 0 0 1 => k = log2 (8+1) = 4

the number of 1s in this data is 3 (0011) 

the complement of (0011) is (1100) 

the resulting code word is: 1001 0001 1100 
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Berger Codes 

Can detect all single-bit errors and all 

unidirectional multi-bit errors

Unidirectional: all bit errors are either from 01 or from 

1  0

Good for detecting coupling faults

Change in one bit erroneously causes change(s) in 

other bit(s)

Models short circuits (including bridging faults)
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Self-Checking Circuits

What properties/invariants can we build into circuits such 
that codeword inputs do not lead to codeword outputs in 
the presence of faults?

Self-testing circuit 
for every fault from a prescribed set there exists at least one valid 
input code word that will produce an invalid output code word when 
a single fault is present in the circuit 

Fault secure circuit 
any single fault from a prescribed set results in the circuit either 
producing the correct code word or producing a non-code word, for 
any valid input code word 

Totally self-checking circuit (TSC) 
the circuit is both fault secure and self-testing 

all single faults are detectable by at least one valid code word 
input, and when a given input combination does not detect the 
fault, the output is the correct code word output 
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Circuit of Basic TSC Comparison Element
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Implementing EDC/ECC in Hardware

Where does EDC/ECC get used?
Disk, CD-ROM

Memory (DRAM, SRAM)

Buses

Network

Tradeoff between EDC and ECC

ECC: Forward error recovery
Often on critical path, so can slow down even fault-free 
system

EDC: Backward error recovery
Detecting error leads to recovery (can be slow)

So would you use ECC or EDC in your L1 cache?
How about in DRAM?
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