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Today’s Lecture ﬂ(“

® Code, codeword, binary code
® Error detecting and correcting codes
® Hamming distance and codes

® Parity prediction
B Odd/even parity
B Basic parity approaches
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Error Detection through Encoding ﬂ(“

® At logic level, codes provide means of masking or
detecting errors

@ Formally, code is a subset S of universe U of possible
vectors

B A noncode word is a vector in set U-S

4 N

X1 is a codeword U

<10010011=>

due to multiple bit error, )

bec S = even parity
ecomes

X3 =<10011100= X1

not detectable

X2 is a codeword.
becomes X4 noncode

detectable \ ) J

(c) 2017, Mehdi Tahoori Reliable Computing I: Lecture 6 3

Basic ldea

W Start with k-bit data word

® Add r check bits

@ Total = n-bit codeword (n=k+r)

® Map 2k data words to 2" sized codeword space

® Overhead = r/n (sometimes computed as r/k)
B E.g., for (single-bit) parity, the overhead is 1/n
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Basic Concepts ﬂ(“

® Code, codeword, encoding, decoding error
detection code, error correcting code
® Hamming distance properties:

® The Hamming weight of a vector x (e.g., codeword),
w(X), is number of nonzero elements of x.

® Hamming distance between two vectors x and y, d(x,y)
is number of bits in which they differ.

B Distance of a code is a minimum of Hamming distances
between all pairs of code words.

B Example: x=(1011), y =(0110)
w(x) =3, w(y) =2, d(x,y) =3
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Hamming Distance Q(IT

® Hamming distance (HD): number of bits in which
two words differ from each other

® E.g., 0010 and 1110 have a Hamming distance of ??
® For a group of codewords, the minimum HD

between any two codewords determines the
code’s ability to detect and/or correct errors

® This is a fundamental rule, not just some ad-hoc
reasoning
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Hamming Distance Visual: HD=2 ﬂ(“
(0.1.1) mq1)
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10.1.0)

. (1,1.0)

H;’ HD=2
Can detect single errors
{0,0,0) (1.0,0)
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Hamming Distance Visual: HD=3 ﬂ(“

(0.1,1) - (1.1.1)
0017 (10.1)
1(0.1,0) V110
HD =3
g Can correct single errors
(0.0.0) (1.0.0) Can detect double& single errors
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Hamming Distance and Error Detection ﬂ(“

@ Can detect up to t-biterrors if HD >=t + 1

1,11 - :
@.1.1) : __f) « What if we receive 1117
+ Could’ve been 011
+ Could’'ve been 101
(0,0,1).. (1.0.1) + Could’'ve been 110
_ .ﬂ), - What about 0017 Or 000?77
010 | Whatif we receive 0117
‘ 7 - Could it have been 001777
y
(0,0,0) (1,0,0)

HD=2, detects 1-bit errors
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Hamming Distance and Error Detection ﬂ(“

@ Can detect up to t-bit errors if HD >=t + 1

(1.1.1)

(0.1.1) ,

(0,0,0) (1.0.0)

HD=3, detects 1,2-bit errors
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Hamming Distance and Error Correction ﬂ(“

@ Can correct up to t-bit errors if HD >= 2t+1

1,1.1
.1 . S
(0.0.1) (1,0,1)
o (1.1.0)
{0,1,0) '
(0,0,0) (1.0,0)
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Hamming Distance and Error Correction

® Can correct up to t-bit errors if HD >= 2t+1

©41) 4 (1,1.1).

+ What if we receive 011?
+ More likely to have been 111
+ But could’ve been 000

(1.1.0) - Guess that it was 111

+ What if we receive 1117
+ Could it have been 0007

©00.1),"

(0.0.0) (1.0.0)
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Summary: Hamming Distance Properties ﬂ(“

B To detect all error patterns of Hamming distance < d,

code distance must be = d+1

B e.g., code with distance 2 can detect patterns with distance 1 (i.e.,
single bit errors)

@ To correct all error patterns of Hamming distance < c,
code distance must be = 2¢c + 1

@ To correct all patterns of Hamming distance ¢ and detect
up to d additional errors ,

code distance mustbe=22c+d+ 1

B e.g., code with distance 3 can detect and correct all single-bit
errors
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Single-bit Parity

® Simplest error detection code
B Adds one bit of redundancy to each data word
® Even (odd) parity: add bit such that total number of
ones in codeword is even (odd)
® E.g., 001010 gets a parity bit of O for even parity (1 for odd)
B Can detect all single-bit errors
® Hamming distance = 2

B Could be greater than 2 if data words don’t use all bit
combinations

® Drawbacks:
B Can't detect anything except single-bit errors
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Parity Codes - Example

‘0dd and even parity codes for BCD data

Decimal BCD BCD
Digit BCD odd parity _even parity
0 0000 00001 00000
1 0001 0000 000I1
2 0010 00100 00101
3 0011 00111 o00l10
4 0100 01000 01001
5 0101 01011 01010
3 0110 01101 01100
7 0111 01110 0Ol111
8 1000 10000 10001
9 1001 lOOL? lOOL%
Parity Parity
Bit Bit

(c) 2017, Mehdi Tahoori
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Parity
Parity Bit E
Parity —
Data Parity Data Checking Signal
Generator —
i »| Memory i
L 1. Dataln 3 Data Out

Organization of a memory that uses single-bit parity.
The parity bit is generated when data is written to
memory and checked when data is read.

Reliable Computing I: Lecture 6 15

XOR Tree for Parity Generation ﬂ(“.
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Data Bats

da_\
a —

oL,
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dy

Generated Parity
Bit

D
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Codes for RAMs

Odd or Even
||5‘14‘13‘12|11|10|9 |s |7 |e |5 |4 Ja |2 |1 |u‘ E Bit-per-word parity
F5|14|13|12|11‘10‘9 ‘B | |7 ‘e ‘5‘4‘3 ‘2 |1 |u| B Bit-per-byte parity
Odd Even
Chip 5 Chip 4 Chip 3 Chip 2 Chip 1
151““‘2 111(||g‘ 8‘ |?|T|T‘T| b ‘zl ‘Tm |Pﬁ“Ps|F|'=|Pl|‘ Bit-per-multiple-chips parity
T
__.Chip5 ¢ Chip 4__ - __Chip3 ____ Chip2 Chip 1
i
[rerefofe] _|j|1°_|f_|ﬁ_L i_|__|__|__|__|_ _|§_|__\__|__\_i P[PPP.|  Bit.per-chip parity
[ .
hs |14|13|11|11|1 o \s 7 |5 \5\4 \3 \2 \1 | | |RBi|Po|p.| Interlaced parity
R =SS
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Parity Codes for Memory - Comparison

Parity Code Advantages Disadvantages
Bit-per-word: one parity bit per data Detects all single- | Certain errors undetected, e.g.,
word bit errors a word, including parity bit

becomes all 1s, due to a failure

of a bus or a set of data buffers.

Bit-per-byte: each data portion (e.g., a
byte) is protected by a separate parity
bit; the parity of one group should be
even and the parity of the other group
should be odd

Detects all-1s and
all-0s conditions

Ineffective for multiple errors,
e.g., the whole-chip failure

Bit-per-multiple-chips: one bit from each
chip is associated with a single parity bit

Detects failure of
entire chip

Cannot locate failure of
complete chip

Bit-per-chip: each parity bit is associated
with one chip of the memory

Detects single-bit
errors and
identifies chip with
erroneous bit

Susceptible to whole-chip
failure, i.e., a single chip error
can result in multiple bits to be
corrupted and this may go
undetected.

Interlaced: similar to the bit-per-
multiple-chips; must ensure that no two
adjacent bits are from the same parity

group

Detects errors in
adjacent bits

Parity groups are not based on
physical organization of the
memory
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Parity Prediction in Arithmetic Circuits ﬂ(“

® Binary Adder

® Twoinputs:a=(a,,...apa,)andb=(b,, ... by b.)

B Two operands to be added: (a,.; ... a5) and (b, ... by)

B a_and b, are check bits of a and b respectively

® Encoded output willbe s = (s, ; ... S5 S.) where
(Sp.1 --- Sp) are determined by the ordinary binary
addition of (a,,.; ... ap) to (b,_; ... by)
and s is the check bit for (s, ... Sp)

® Then s,=»s, =§: @Eb @Ec
® Reduces to »“c=”c@bc@gﬁ}

(c) 2017, Mehdi Tahoori Reliable Computing I: Lecture 6 19

Parity Prediction in Binary Adder ﬂ(“.

R EN § Y

Binary adder

C

n-1

Sp1 So Error
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Parity-Checked Binary Adder

a by

13
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€

td

Sp1 ayy by B a S0
[
Sum v Sum [*7 9 Sum
-
Cp1 [ €1
. <+— Cany [+T—4 Carry
, !
G c .
e r Carry e—— a Carry
Emror +— @
- @ s, 8y
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Binary Multiplier

Do = ayby

P =agh & ab,

p, =ab, ®ab ®a,b, Bc,

Ps=ayh, @ab, ® a,b, @ ab,®ec,, Pc,
Pi=ab, @ ah Eab e, De,, B,
ps=ab, ®ab Bc,,Pec,;Pq,

Ps =a;h, De, D,y ,

P; =6,

® Therefore, denoting the check bit for (p, ...
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Multiplier Using Array of Full-Half Adders 'ﬂ(“.

2
a3, 3 a4

HA: Half Adder b
FA: Full Adder
S: Sum a a, a 2,
§

C: Carry eﬁ 6 | o g b,
[eo o [es ] [ ]
a a Cin a Csn a[: T,
% 6 @ : |
|ES |FA ‘Cg|m |cs|n
a; a, C, :{_I C 1‘0 C, :
Iy [y 65 N
[ ] [cs = [es
e Tl e ‘
11 [T
‘c s |rA \_‘T N |m M B |1-m
F“*l Cy 4 1 Cis l
Pr Ps Ps P: Ps Px P P
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Parity Checked Multiplier ﬂ(“

Error

Py~

Pi—

P |

" @

Py —

P

P =
Py

®)

()
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Overlapping Parity (for single-bit errors)

B Parity groups are formed with each bit appearing in more than one
parity group

® Errors can be detected and located

B Erroneous bit can be corrected by a simple complementation

k=4 information bits r=3 parity bits

i2 i1

t

i0 p2 p1

S

p0

When receiving
codeword, re-compute 3
parity bits and compare
to those that were sent.
If different, can diagnose
error (and correct it)!

Which bit has error? Parity bits affected
i3 p2, p1, p0

i2 p2, p1

i1 p2, p0

i0 p1, p0

p2 p2

p1 p1

po p0

(c) 2017, Mehdi Tahoori

Error Correction with Overlapped Parity

Lz T2l

1 0
Parity Generato

)

Pr

) >
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[0 [Elrlr]
|
| | ]
| 1 '
o3 12 3
Parity Generato Parity Generatop
i{,| Pa
g :) Carrect Bit 0
Correct Bit1
[ Correct Bit 2
338 £3 Correct Bit3
Decode CPO  ComectBitP,
g;‘z Correct Bit Py
£ Correct Bit Py
Mo Errar
co N
Bit0 D —Bito
c1 .
Bit1 D Bit1
c2 Corrected Bits
" Bit2
Bit2 j , )
cp2
i gy S
26
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Generalized Overlapping Parity Codes Q(IT

® The previous slide showed how to use overlapping
parity to detect and diagnose single-bit errors

® For single-bit errors, there are k+r possible errors

B Therefore, we need 2" =2k + r + 1 to uniquely diagnose
errors

® In general, can extend this scheme to detect and
diagnose more than single-bit errors

B General approach called “Hamming Codes”

(c) 2017, Mehdi Tahoori Reliable Computing I: Lecture 6 27

Hamming Error-Correcting Code Q(IT

@ Require from 10% to 40% redundancy

@ Best thought of as overlapping parity

@ The Hamming single-error correcting code uses c parity
check bits to protect k bits of information:
B 2x=2c+k+1

® Example:

® suppose four information bits (d3, d2, d1, d0) and as a result three
parity bits (p1, p2, p3)

® the bits are partitioned into groups as (d3, d1, dO, p1), (d3, d2, dO,
p2) and (d3, d2, d1, p3)
a thezkgroluping of bits can be determine from a list of binary numbers from 0

to 2K- 1.

B each check bit is specified to set the parity, either even or odd, of

its respective group
7 654 32 1

‘ da‘ dz‘ d1‘ P3| do‘ Pz‘ P1‘
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Hamming Error-Correcting Code ﬂ(“

Determining the bit groups
( three parity bits)

000

001 1

010 2

011 3 3

100 4

101 5 5

110 6 6

11 . 7 7 7
Parity bits calculation Parity checking

* p1=XOR of bits (3,5, 7) ¢l =XOR of bits (1,3, 5, 7)

p2 = XOR of bits (3, 6, 7) c2 = XOR of bits (2,3, 6, 7)
p3 = XOR of bits (5, 6, 7) ¢3 = XOR of bits (4,5, 6, 7)

® Observe that each group of bits for parity checking
starts with a number that is a power of 2, e.g., 1, 2, 4.
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(7,4) Hamming Code ﬂ(“

® Class of (n,k) Hamming codes, e.g., (7,4) [r= n-k =3]
W Letil, i2, i3, i4 be the information bits

B Let pl, p2, p4 be the check bits

@ pl =il xori2 xor i4

B p2 =il xor i3 xor i4

B p4 =i2 xor i3 xor i4

B Let H be the Parity Check Matrix

® If Cis a codeword, then H C = 0 (mult modulo 2!)

® Else, HC =S, where S is the syndrome

B Syndrome identifies where error occurred (i.e., which bit)
B This works out like magic because of some cute math

(c) 2017, Mehdi Tahoori Reliable Computing I: Lecture 6 30
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(7,4) Hamming Code ﬂ(“

| H=

[y
o
-
o
=9
[=]
-

® Infoword: 0101: p1=0,p2=1,p4=0
® codeword is 0100101
® Examplel:
B received error-free codeword R = 0100101
® Compute syndrome: S=HR=0=[00 0]
| Example 2:
® received R =0110101 (i.e., error in bit position 3)
® Compute syndrome: S=HR =[110]
B Read backwards this is 011 = 3
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Check Bits and Syndromes for Single-Bit Errors ﬂ(“‘

® The original data is encoded by generating a set C, of parity
bits.

® To check correctness, the encoding process is repeated and a
set C., of parity bits is generated.

mf Cg and C; agree, the information is correct.

® If C, and C, disagree, the information is incorrect and must be
corrected.

® To aid the correction, a syndrome is defined:

® The syndrome is a binary word that has 1 in each bit position in which
C, and C, disagree; the syndrome points directly to the erroneous bit.

Erroneous bits Check bits affected Syndromes
do P1, P2 110
dy P1, P3 101
da P2, P3 01
ds P1, P2, P3 111
Py P4 100
P2 P2 010
p3 P3 001
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Hamming Single-Error Correction Unit IT

Karlirulv Institute of Technokay

1 2 3 4 5 6 7

Hamming single-error correction unitfor four | p| p, | dy| ps| dy | 4, ] d;
information bits and three check bits

dy d, dy d, d; d, dy d; dy
Parity Parity Parity
Generator Generator Generator
B P P
D3 : P2 ? D1

7YY

o G C, C, ’}
™
Syndrome
noP dy ITJ 4, ‘lll dy
L oT— L ! ‘ . Syndrome determines
Syndrome & C, Controlled Compl tation Unit which bit (if any) Is
{ & ‘ oln TO T Olmp errlwen a ||on nll |} complementetly
PP dy P2 q d, 4, +—— Comected Bits
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Single Error Correction and Double Error “(IT
Detection Hamming Code (SEC-DED) =\il

« Consider a data word consisting of four
information bits

* Three parity bits are needed to provide

1 1 1 1 1 1 1 1 single error correction

« Adding an extra parity bit, the Hamming
code can be used to correct single bit

o |1 s lolol 1110 errors and to detect double errors

P1 Pz dy Py | dy d; dy Pa

Check bits computation
P;=XOR (3,5, 7)

P,=XOR (3,6, 7)

G| G G | G P,=XOR (5,6, 7)

ol o | g |o |Noerrors P, = parity over the first 7 bits
of the code word

Single error in a position

il I I A P Syndromes computation
vo |l ve | v |0 C,=XOR(1,3,5,7)
Double error C,=XOR (2,3,6,7)
0 0 0 1 . . C,=XOR (4,5,6,7)
rrorin bit py C, = parity over all 8 bits
of the code word
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Single Error Correction and Double Error “(IT
Detection Hamming Code (SEC-DED) Example Y

of Technoioay

P4 P2 dy P: | d d, dy Pa Initial daa
do di dy d;
1 1 0 1 0 0
! 0 ! 0110
2 1 1 @ 0 1 1 1] 0
Failure 7
scenarios 3 1 1 0 0 1 \E 0 0
4 @ 1 1o | o @ 110 | o
N
{ |
5 1 1 0 0 1 1 1] \1/
€4 €2 C3 Cy
1 0 0 0 0 No errors
Corresponding 2 1 1 0 1 Single error in position 3
Syndromes
3 o] 1 1 1 Single error in position 6
4 0 0 1 0 Double error
5 o 0 0 1 Error in bit py
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