
Reliable Computing I – Lecture 4

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association

INSTITUTE OF COMPUTER ENGINEERING (ITEC) – CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC)

www.kit.edu

Reliable Computing I

Lecture 4: Hardware Redundancy

Instructor: Mehdi Tahoori

Reliable Computing I: Lecture 4

Today’s Lecture

2(c) 2017, Mehdi Tahoori

Forward and backward error recovery

Hardware redundancy schemes

Passive

Active

Hybrid

Reliable Computing I – Lecture 4

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 4

Redundancy

Hardware redundancy

add extra hardware for detection or tolerating faults

Information redundancy

extra information, i.e. codes

Time redundancy

extra time for performing tasks for fault tolerance

Software redundancy

add extra software for detection and possibly tolerating

faults

3(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 4

Recovering from Errors

Two basic approaches

Forward Error Recovery (FER)

Backward Error Recovery (BER)

FER: continue to go forward in presence of errors

Use redundancy to mask effects of errors

E.g., have a co-pilot that can seamlessly take over
airplane

BER: go backward to recover from errors

Use redundancy to enable recovery to saved good state
of system

E.g., go back to old saved version of file that you
corrupted

4(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 4

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 4

Forward Error Recovery

Canonical example: triple modular redundancy

(TMR)

Majority voter chooses correct output

Masks error in any one of the three modules

5(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 4

Backward Error Recovery

Canonical examples
Periodic checkpoint/recovery

Logging of changes to system state

BER designs tend to be more complicated

Very Rough Comparison: FER vs. BER

6(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 4

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 4

Performance of FER vs. BER

7(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 4

System Design Space

Systems tend to get only 2 out of 3 features

8(c) 2017, Mehdi Tahoori

High Availability

Low Cost High Performance

Backward Error

Recovery

Forward Error

Recovery

Laptops and PCs

Reliable Computing I – Lecture 4

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 4

Physical (Spatial) Redundancy

Physically replicate a module
Most obvious approach

Design issues
How many replicas are needed?

For error detection?

For error correction?

How are errors detected/corrected?

Is the redundancy “active” or “passive”?

Canonical example: triple modular redundancy (TMR)
3 replicas

Errors corrected by majority voter

Redundancy is passive (no special action taken if error
detected)

9(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 4

Basic Forms of Hardware Redundancy

Passive hardware redundancy

relies on voting to mask the occurrence of errors

can operate without need for error detection or system reconfiguration

triple modular redundancy (TMR) , N-modular redundancy (NMR),

Active hardware redundancy

achieves fault tolerance by error detection, error location, and error
recovery

duplication and comparison

standby sparing

one module is operational and one or more modules serve as standbys or
spares

Hybrid hardware redundancy

Fault masking used to prevent the system from producing erroneous
results

fault detection, location, and recovery used to reconfigure the system
in the event of an error.

N-modular redundancy with spares.

10(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 4

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 4

Physical Redundancy: TMR

Strengths
Tolerates an error in any single module

Tolerates soft and hard errors

Simple design

Small performance penalty, even when faults occur

Weaknesses
Can’t tolerate multiple faults

Can’t tolerate any faults after a latent hard fault

Expensive hardware (3x cost)

Uses lots of power (approx 3x power of unprotected)

Also a 3x energy cost

Single point of failure at voter

Can’t tolerate errors due to design faults … why not?

11(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 4

TMR with 3 Voters

Remove single point of failure

Use TMR with 3 voters
Restoring organ

Cascade such systems
Multistage TMR with replicate voters

12(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 4

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 4

Physical Redundancy: NMR

N-modular redundancy (N is an odd integer)

Why is N odd?

Can tolerate more errors than TMR

Tolerates up to N/2 – ½ errors

Cost = N*cost of module

Cost = {hardware, power, energy}

Still has single point of failure at voter!

But voter is simple and can be designed to be very robust

One solution to single voter problem

“Restoring organ” = TMR with triplicated voter

How does this help?

13(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 4

Physical Redundancy: Boeing 777

Boeing 777 requires near-perfect reliability

Its main flight computer:

Has 3 identical units in a TMR configuration

Each of these units has 3 processors in a TMR configuration

The three processors in each unit are heterogeneous!

Intel 80486 (the x86 before the original Pentium)

Motorola 68040

AMD 29050

14(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 4

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 4

TMR in Complex Networks

15(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 4

Voting in Hardware & Software

Guarantee majority vote on the input data to the voter

Ability of detecting own errors (self-checking)

Determine the faulty replica/node (building the exclusion
logic)

Voting in networked systems (software)
requires synchronization of inputs to the voter

may be difficult to determine voter timeout

different relative speed of machines

varying network communication delays

Voting in hardware systems
generally does not require an external synchronization of inputs to
the voter

lock step mode or loosely synchronized mode

CPUs internally can be out of synch because of non-deterministic
execution of instructions

16(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 4

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 4

Hardware vs. Software Voting schemes

Hardware Software

Cost High Low

Flexibility Inflexible Flexible

Synchronization Tightly Loosely

Performance High (fast) Low (slow)

Types of voting Majority (others costly) Different (no extra cost)

17(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 4

Types of voting

majority

in many practical situations it is meaningless

average

can have poor performance if a sensor always provide

very low value

mid value

a good choice - can be very costly to implement in HW

18(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 4

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 4

Voter Example (Tandem Integrity)

Voting on CPU initiated operations
Voter divided into two parts: majority voter and vote analyzer

the majority voter generates a bit by bit majority vote from the
three inputs to the voter

the vote analyzer is a three part comparator and determines
whether one of the inputs is faulty

Voting logic is duplicated and compared

a failure in the voting logic results in a self-check error

Voting on external I/O operations
distributed, majority voting performed locally on each CPU

19(c) 2017, Mehdi Tahoori

Various Hardware Redundancy Schemes

20(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 4

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 4

Active hardware redundancy

Key - detect fault, locate, reconfigure

Duplicate with comparison

can only detect, but NOT diagnose

i.e. fault detection, no fault-tolerance

may order shutdown

comparator is single point of failure

21(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 4

Active hardware redundancy

Standby sparing

One operational unit

It has its own fault detection mechanism

On occurrence of fault a second unit (spare) is used

cold standby - standby is in unknown state

inactive and must be warmed up

hot standby - standby is same state as system - quick start

standby was active and is in correct state

Can be generalized to n

One active and n-1 standby spares

22(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 4

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 4

Standby Sparing

23(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 4

More Active Redundancy

Pair-and-spare

Combines “duplicate with comparison” with “standby sparing”

Like standby sparing, except each module is a pair

This pair compares outputs to detect errors

Duplicate units (pair of units) are used to compare and signal an error to the
reconfiguration unit

Second duplicate (pair, and possibly more in case of pair and k-spare) is used
to take over in case the working duplicate (pair) detects an error

A pair is always operational

24(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 4

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 4

Hybrid Physical Redundancy

Combine passive and active redundancy

Example: NMR with spares

Let’s say we have 5 replicas

Organize 3 into a TMR scheme

Save other 2 for use as spares

25(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 4

Hybrid Physical Redundancy

Combine passive and active redundancy

Example: NMR with spares

Let’s say we have 5 replicas

Organize 3 into a TMR scheme

Save other 2 for use as spares

After first hard fault, map in a spare

26(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 4

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 4

Hybrid Physical Redundancy

Combine passive and active redundancy

Example: NMR with spares

Let’s say we have 5 replicas

Organize 3 into a TMR scheme

Save other 2 for use as spares

After first hard fault, map in a spare

After second hard fault, map in other spare

Even after 2 hard faults, can tolerate a third

Thus, system can tolerate 3 faults that occur
sequentially

Recall that 5MR can only tolerate 2 faults

27(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 4

NMR with spares

28(c) 2017, Mehdi Tahoori

output

Reliable Computing I – Lecture 4

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 4

Hybrid Physical Redundancy

Self purging redundancy

initially start with NMR

all modules are active

purge one unit at a time till arrive at 3MR

exclude modules on error detection

can tolerate more faults initially compared to NMR with spare

29(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 4

Hybrid Physical Redundancy

Triple-duplex redundancy

combines duplication-with-compare and TMR

redundant self checking

each node is really 2 modules + comparator

self-disable in event of error

Flux summing

Inherent property of closed loop control system

If one module becomes faulty, remaining modules compensate

automatically.

30(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 4

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 4

Triple-duplex redundancy

31(c) 2017, Mehdi Tahoori

