
Reliable Computing I – Lecture 3

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association

INSTITUTE OF COMPUTER ENGINEERING (ITEC) – CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC)

www.kit.edu

Reliable Computing I

Lecture 3: Faults, Errors, Failures

Instructor: Mehdi Tahoori

Reliable Computing I: Lecture 3

Today’s Lecture

2(c) 2017, Mehdi Tahoori

Terminology and classification

Causes of Faults and Trends

Fault Modeling

Hardware

Software

Reliable Computing I – Lecture 3

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 3

Faults

Fault: incorrect state of hardware or software resulting

from physical defect, design flaw, or operator error

Faults introduced during system design

Pentium’s incorrect floating point division design

Bug in software could cause infinite loop

Faults introduced during manufacturing

Bad solder connection between chip pin and motherboard

Broken wire within chip

Faults that occur during operation

Cosmic ray knocks charge off DRAM cell

System administrator incorrectly installs new software

3(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 3

Errors

Error: manifestation of a fault

Bit in main memory is a 0 instead of a 1 (due to cosmic

ray)

Software pointer that mistakenly points to NULL (due to

bug)

But not all faults lead to errors!

Trees falling in empty forests don’t make sounds

Examples of masked faults

Cosmic ray knocks charge off logic signal, but after it

had been correctly latched in and saved

Buggy software that isn’t reached

4(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 3

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 3

Failures

Failure: system level effect of an error (user-

visible)

System produces incorrect result of computation (e.g.,

2+2=5)

System “hangs” (e.g., Blue Screen of Death)

Not all errors lead to failures!

Examples of masked errors

Bit flip in memory location that’s not accessed again

NULL pointer that’s not referenced again

5(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 3

Physical Failures During Lifetime

Three phases of system lifetime
Infant mortality

Normal lifetime

Wear-out period

Physical failures follow famous “bathtub curve”

6(c) 2017, Mehdi Tahoori

Time1-20 weeks 7-15 years

Wearout
Period

Normal
Lifetime

Infant
Mortality

Failure
Rate

Reliable Computing I – Lecture 3

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 3

Fundamental Chain of Dependability

Example 1

A short in an integrated circuit is a failure (with respect

to the function of the circuit)

The consequence (e.g., stuck at a Boolean value) is a

fault that stays dormant until activated

Upon activation (invoking the faulty component by

applying an input) the fault becomes active and

produces an error

If and when the propagated error affects the delivered

service (e.g., information content), a failure occurs

7(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 3

Fundamental Chain of Dependability

Example 2
The result of an error by a programmer leads to a failure to
write the correct instruction or data

This results in a dormant fault in the written software (e.g.,
faulty instruction)

Upon activation the fault become active and produces an
error

When the error affects the delivered service , a failure occurs

Example 3
An inappropriate human-system interaction performed by an
operator is an external fault (from the system view point)

Resulting altered processed data is an error, ……

8(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 3

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 3

Fundamental Chain of Dependability

Example 4

Cosmic ray knocks charge off of DRAM cell

Error: bit flip in memory

Failure: computation produces incorrect result

Example 5

Software bug could allow for NULL pointer

Bug gets exercised and we get NULL pointer

Program seg faults when it tries to access pointer

9(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 3

Propagation and Masking

Impact of faults can spread throughout the system

If a chip shorts power to ground, it may cause nearby

chips to fail as well

Common clock and power net

Independence of modules is a strong simplification

Error propagation: Erroneous results used in

subsequent computations

Containment upon detection important

Masking

Electrical, logical, temporal, behavior al

10(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 3

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 3

Masking

Logical

E.g., if a fault flips a bit from 0 to 1 and it is then ANDed

with a bit that is 0, then the fault cannot manifest itself

as an error

Functional

E.g., incorrect data is produced by an instruction that

gets squashed due to a branch misprediction

E.g., the destination register of a NOP is corrupted by a

fault

11(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 3

Faults, Errors, and Failures

12(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 3

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 3

Origin of Defects in Objects

(hardware or software)

Good object wearing out with age
Hardware (software can age too)

Incorrect maintenance/operation

Good object, unforeseen hostile environment
Environmental fault

Marginal object: occasionally fails in target

environment
Tight design/bad inputs

Implementation mistakes

Specification mistakes

13(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 3

Fault Classes: Temporal persistence

Permanent faults, whose presence is continuous and
stable.

E.g., Broken connection  always open circuit

Intermittent faults, whose presence is only occasional
due to unstable hardware or varying hardware and
software states (e.g., as a function of load or activity)

E.g., Loose connection  occasionally open circuit

E.g., Bug in little-used software for rounding  incorrect data

Transient faults, resulting from temporary
environmental conditions.

E.g., Cosmic ray knocks charge off transistor  bit flip

Tend to be due to transient physical phenomena

Also known as Single Event Upset (SEU)

14(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 3

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 3

Fault Classes

Based on the origin

Physical faults

Stemming from physical phenomena internal to the system,

such as threshold change, shorts, opens, etc.,

or from external changes,

such as environmental, electromagnetic, vibration, etc.

Human-made faults

Design faults,

introduced during system design, modification, or

establishment of operating procedures,

Interaction faults,

violation of operating or maintenance procedures

15(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 3

Physical Defects: Transient Phenomena

Cosmic radiation

High energy particles that constantly bombard Earth

May have enough energy to disrupt charge on transistor
(Qcrit)

Used to be only a problem for DRAM, but becoming a
problem for SRAM and even for logic (as Qcrit decreases)

16(c) 2017, Mehdi Tahoori

p-

n+n+

-+
-+

-+
-

+

High Energy Neutron

Gate DrainSource

Silicon

nucleus

Sensitive

region

Reliable Computing I – Lecture 3

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 3

Physical Defects: Transient Phenomena

Cosmic radiation trends:

Qcrit decreasing

Probability increasing that a cosmic ray that hits a

transistor will disrupt its charge

Transistor size decreasing  smaller probability that a

cosmic ray will hit a particular transistor

More transistors per system  greater probability of

fault

17(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 3

Physical Defects: Transient Phenomena

Alpha particle radiation

Similar to cosmic rays, but radiation comes from metal decay

Often, the metal housing of the computer is the source

Lead solder joints also a problem  want to use “old lead”

Trends (same as for cosmic radiation):

18(c) 2017, Mehdi Tahoori

p-

n+n+

-+
-+

-+
-

+

Charged Particle (CP)Gate DrainSource

Sensitive

region

Reliable Computing I – Lecture 3

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 3

Physical Defects: Transient Phenomena

Electromagnetic Interference (EMI)

Electromagnetic waves from other sources (e.g.,

microwave oven, power lines, etc.) can cause transient

disruptions

EMI can be created by the circuit itself! Called

“crosstalk”

EMI can induce electrical current on wires and thus

change the signals on wires

There are other sources of transient faults, but

they tend to be less significant

19(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 3

Physical Defects: Manufacturing Defects

Manufacturing is not a perfect process, especially
for microprocessors

It’s not easy to manufacture something with dimensions
on the order of 10nm

Many stages of chip processing which have to be done
perfectly and avoid contamination

And testing doesn’t filter out all defective systems

Often impossible to test for every possible defect in a
reasonable amount of time

Also, testing won’t detect defects that don’t manifest
immediately

Nanotechnology makes this problem even worse

20(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 3

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 3

Evidence of Manufacturing Defects

21(c) 2017, Mehdi Tahoori

Void under anchor Silicon damage
Metal2 extrusion/

ILD2 crack Metal 1 Shelving

M4 Void FormationsM4-M4 Short Poly stringer

Reliable Computing I: Lecture 3

Physical Defects: Manufacturing Defects

Manufacturing flaws

Bad solder connection between chip and board

VLSI defects

Trends:

Flaws may decrease as manufacturing process matures

But flaws increase at start of each new process

Tougher to avoid VLSI defects as dimensions shrink

22(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 3

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 3

Physical Defects: Manufacturing Defects

VLSI fabrication process variability

During fab, there’s some amount of variability in dimensions

Thickness of gate oxide dielectric

Length of channel

Area of via

Variability can lead to undesirable behavior

Gate thickness falls below usable threshold  extra leakage

current

Wire resistance is too high  signal too slow for clock

Trend: variability rising as VLSI dimensions shrink

When dimensions are on the order of a handful of atoms, it

doesn’t take much variability to cause significant problems

23(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 3

Physical Defects: Operational Defects

Permanent (hard) defects can occur during operation

Electromigration

Movement of metal atoms due to electron flow and

temperature

Increases with current density and temperature

Unidirectional current: Power rails

Trend: getting worse as wires become smaller and chips

become hotter

24(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 3

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 3

Physical Defects: Operational Defects

Time Dependent Dielectric Breakdown (TDDB)

MOSFET transistor has a gate oxide that insulates the gate
from the channel

If this oxide breaks down, will get a short between gate and
channel

Trend: getting worse as gate oxides become thinner (only a
handful of atoms thick!)

25(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 3

Physical Defects: Operational Defects

Transistor aging

Causes

Negative and Positive Bias Temperature Instability (NBTI and
PBTI)

Hot Carrier Injection (HCI)

Effects:

Change of transistor’s threshold voltage over time  Reduced
current  Transistors become slower  cause timing failures

Trend: getting worse with technology scaling

26(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 3

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 3

Impact of aging on delay

27(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 3

Hardware Design Flaws: Logical Bugs

Famous examples:

Intel Pentium floating point divide didn’t work in every

single case due to bug in design

very costly recall

Sun UltraSPARC III had design flaw in a special cache

that meant that it couldn’t be used

loss in performance

AMD’s quad-core Barcelona chip had design bug in

TLB hardware

Long, expensive delay in shipping chips

28(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 3

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 3

Hardware Design Flaws: Timing Bugs

Logic is fine, but the timing analysis is flawed

Example: clocking a processor at 4 GHz when

there’s a slow path in the pipeline that can only

run at 3.8 GHz

Timing analysis must consider critical path delay

and environmental effects (operating temperature,

EMI, cross-talk, etc.) to determine the maximum

operating speed

This problem is exacerbated by process variability

29(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 3

Design Flaws: Software

We all know that software has bugs

Types of bugs

Incorrect algorithm

Memory leak (C, C++, but not Java)

Allocating memory, but not deallocating it

Reference to NULL pointer (C, C++, but not Java)

This usually leads to a seg fault and core dump

Incorrect synchronization in multithreaded code

Allowing more than 1 thread in critical section at a time

30(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 3

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 3

Operator Error

It has been argued that operator error is the

leading cause of computer system failures

Examples

rm –R * (in the wrong directory)

Incorrect installation of software

Frying a board when installing new memory chips

Dropping the laptop (and/or kicking it)

31(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 3

Purpose of Fault Modeling

Model = abstraction of physical phenomenon

Simple, tractable way to analyze effects of faults

Limitations

Model multiple defects (loss of resolution)

May not distinguish defects or miss defects

May not be realistic

32(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 3

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 3

Fault Modeling: Example

“fail-stop” network switch

if a fault occurs, the switch will just stop doing anything

Model reflects the behavior of many potential
underlying faults

E.g., switch has short from power to ground, switch is on fire,
etc.

Easier to work with this model than to consider all
possible faults

Fail-stop fault model for network switch doesn’t handle
case where switch starts routing packets incorrectly

And this fault model represents several realistic underlying
faults

33(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 3

Fault Models for Digital Circuits

Traditional fault models

Stuck-at faults

A line is always at a fixed value (1 or 0)

Bridges

Lines shorted together

Z(X,Y): modeled as OR, AND

Transition delay faults

Transition arrives too late

Slow-to-rise, slow-to-fall

Fault models for nano-scale circuits
Crosstalk, small/path delay faults, resistive opens and bridges

34(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 3

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 3

Hardware Fault Models

35(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 3

How Many Faults at Once?

Many fault models include the assumption that only
one fault can occur at a given instance

Helps to make analysis more tractable

E.g., “single stuck-at fault” model

Reasonable assumption if:
Faults are rare

System doesn’t require extreme reliability

Faults are detected and, if necessary, removed quickly

The problem with latent faults
Fault occurs, but isn’t detected

Later, a “single” fault occurs, but this is now a double fault
scenario

If you only plan for single faults, then this situation is a
problem

36(c) 2017, Mehdi Tahoori

Reliable Computing I – Lecture 3

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 3

Software Fault Models

Allocation management : Memory region used after deallocation

Copying overrun: Program copies data past end of a buffer

Pointer management: Variable containing data address corrupted

Wrong algorithm: Program works executes but uses wrong algorithm

Uninitialized variable: Variable used before initialization

Undefined state: System goes into unanticipated state

Data error: Program produces or reads wrong data

Statement logic: Statements executed in wrong order or omitted

Interface error: A module's interface incorrectly defined or incorrectly
used

Memory leak: Program does not deallocate memory it has allocated

Synchronization: Error in locking or synchronization code

37(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 3

Software Fault Models

Incorrect computation: Arithmetic overflow or an
incorrect arithmetic function

Data fault: Incorrect constant or variable

Data definition fault: Fault in declaring data or data
structure

Missing operation: Omission of a few lines of source
code

Side effect of code update: Not all dependencies
between software modules considered when updating
software

Unexpected situation: Not providing routines to
handle rare but legitimate operational scenarios

38(c) 2017, Mehdi Tahoori

