
KIT – University of the State of Baden-Wuerttemberg and 

National Research Center of the Helmholtz Association

INSTITUTE OF COMPUTER ENGINEERING (ITEC) – CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC)

www.kit.edu

Reliable Computing I

Lecture 10: Re-execution

Instructor: Mehdi Tahoori



Reliable Computing I: Lecture 10

Today’s Lecture

Re-Execution techniques

RESO

Multithreading

2(c) 2018, Mehdi Tahoori



Reliable Computing I: Lecture 10

Re-Execution

Replicate the actions on a module either 

on the same module (temporal redundancy) or 

on spare modules (temporal & spatial redundancy)

Good for detecting and/or correcting transient faults

Transient error will only affect one execution

Analogy from real life: calling to confirm a reservation

Can implement this at many different levels

ALU

Thread context

Processor

System

3(c) 2018, Mehdi Tahoori



Reliable Computing I: Lecture 10

Re-Execution with Shifted Operands (RESO)

Re-execute the same arithmetic operations, but with 
shifted operands (question: why shift?)

Goal: detect errors in ALU

Example: shift left by 2

Simplified example: we’re ignoring wraparound

By comparing output bit 0 of the first execution and 
output bit 2 of the shifted re-execution, we detect an 
error in the ALU, since they should be equal

4(c) 2018, Mehdi Tahoori



Reliable Computing I: Lecture 10

Re-Execution With a Twist

After adding A + B = C, then compute C-B

If we don’t get A, there’s a problem

What new types of faults/errors does this detect?

How general is this approach?

I.e., how many operations are reversible?

Can we extend this to higher-level operations 
(algorithms)?

The devil is in the details (corner cases)

Overflow, underflow, divide by zero, etc.

This type of execution checking is more frequently 
performed at the software level … why?

5(c) 2018, Mehdi Tahoori



Reliable Computing I: Lecture 10

Re-Execution with Processes

Use redundant process to detect errors

If we only have one CPU with a single-threaded core, we 
must execute two processes sequentially and then 
compare their results. If they differ, there’s an error.

Problem: slowdown factor = 2

In a multicore, we can execute copies of the same 
process simultaneously on 2 cores and have them 
periodically compare their results

Most modern processors are multicore “Chip Multi Processor” (CMP)

Almost no slowdown, except for comparisons

Disadvantages: the opportunity cost and power/energy cost of not 
using that other core to perform non-redundant work

Is this an FER approach? (hint: what happens if an error occurs?)

6(c) 2018, Mehdi Tahoori



Reliable Computing I: Lecture 10

Re-Execution with Threads

Use redundant threads to detect/correct errors
A thread is like a process, except that multiple threads can 
share the same address space

Many current microprocessors (Intel, AMD, IBM), are 
multithreaded (“hyperthreaded”, if you work for Intel)

Each processor can run multiple processes or multiple 
threads of the same process (i.e., it has multiple thread 
contexts)

Can re-execute a program on multiple thread contexts, 
just like with multiple processors

Better performance than re-execution with multiple 
processors, since the comparison can be performed on-chip

Less opportunity cost to use extra thread context than extra 
processor

7(c) 2018, Mehdi Tahoori



Reliable Computing I: Lecture 10

Fault Detection via Lockstepping (HP Himalaya)

8(c) 2018, Mehdi Tahoori

R1  (R2)

Input

Replication

Output

Comparison

Memory covered by ECC

RAID array covered by parity

Servernet covered by CRC

R1  (R2)

microprocessor microprocessor

Replicated Microprocessors + Cycle-by-Cycle Lockstepping



Reliable Computing I: Lecture 10

Fault Detection via Simultaneous Multithreading

9(c) 2018, Mehdi Tahoori

R1  (R2)

Input

Replication

Output

Comparison

Memory covered by ECC

RAID array covered by parity

Servernet covered by CRC

R1  (R2)

THREAD THREAD

Replicated Microprocessors + Cycle-by-Cycle Lockstepping

Threads ?
Without lockstepping: Transient 

redundancy is not guaranteed!

→ Solution in later slides



Reliable Computing I: Lecture 10

Recap: Simultaneous Multithreading (SMT)

10(c) 2018, Mehdi Tahoori

Functional

Units

Instruction

Scheduler

Thread1 Thread2

Example: Alpha 21464, Intel Northwood, many more recent architectures

(More details on threading in lectures from CAPP, Prof. Karl)



Reliable Computing I: Lecture 10

Redundant Multithreading (RMT)

RMT = Multithreading + Fault Detection (& Recovery)

11(c) 2018, Mehdi Tahoori

Multithreading (MT)
Redundant 
Multithreading (RMT)

Multithreaded

Uniprocessor

Simultaneous 

Multithreading (SMT)

Simultaneous & 
Redundant Threading 
(SRT)

Chip Multiprocessor 
(CMP)

Multiple Threads 
running on CMP

Chip-Level Redundant 
Threading (CRT)



Reliable Computing I: Lecture 10

Sphere of Replication

Two copies of each architecturally visible thread

Co-scheduled on SMT core

Compare results: signal fault if different

12(c) 2018, Mehdi Tahoori

Memory System (incl. L1 caches)

Sphere of Replication

Output

Comparison

Input

Replication

Leading

Thread

Trailing

Thread



Reliable Computing I: Lecture 10

Basic Pipeline

13(c) 2018, Mehdi Tahoori

Fetch Decode Dispatch CommitExecute

Data Cache

Both leading & trailing threads would go through this pipeline



Reliable Computing I: Lecture 10

Load Value Queue (LVQ)

Load Value Queue (LVQ)

Keep threads on same path despite I/O or MP writes

Out-of-order load issue possible

14(c) 2018, Mehdi Tahoori

Fetch Decode Dispatch CommitExecute

Data Cache

LVQ



Reliable Computing I: Lecture 10

Store Queue Comparator (STQ)

Store Queue Comparator

Compares outputs to data cache

Catch faults before propagating to rest of system

15(c) 2018, Mehdi Tahoori

Fetch Decode Dispatch CommitExecute

Data Cache

STQ



Reliable Computing I: Lecture 10

Branch Outcome Queue (BOQ)

Branch Outcome Queue

Forward leading-thread branch targets to trailing fetch

100% prediction accuracy in absence of faults

16(c) 2018, Mehdi Tahoori

Fetch Decode Dispatch CommitExecute

Data Cache

BOQ



Reliable Computing I: Lecture 10

Line Prediction Queue (LPQ)

Line Prediction Queue

Alpha 21464 fetches chunks using line predictions

Chunk = contiguous block of 8 instructions

17(c) 2018, Mehdi Tahoori

Fetch Decode Dispatch CommitExecute

Data Cache

LPQ



Reliable Computing I: Lecture 10

SRT Performance

One logical thread  two hardware contexts

Performance degradation = 30%

Per-thread store queue buys extra 4%

Two logical threads  four hardware contexts

Average slowdown increases to 40%

Only 32% with per-thread store queues

18(c) 2018, Mehdi Tahoori

SRT = Simultaneous Redundant Threading



Reliable Computing I: Lecture 10

Redundant Multithreading (RMT)

RMT = Multithreading + Fault Detection (& Recovery)

19(c) 2018, Mehdi Tahoori

Multithreading (MT)
Redundant 
Multithreading (RMT)

Multithreaded

Uniprocessor

Simultaneous 

Multithreading (SMT)

Simultaneous & 
Redundant Threading 
(SRT)

Chip Multiprocessor 
(CMP)

Multiple Threads 
running on CMP

Chip-Level Redundant 
Threading (CRT)



Reliable Computing I: Lecture 10

Chip-Level Redundant Threading

SRT typically more efficient than splitting one 
processor into two half-size CPUs

What if you already have two CPUs? = Multicore

 Conceptually easy to run these in lock-step
Benefit: full physical redundancy

Costs:

Changed hardware design

Latency through centralized checker logic

Overheads (misspeculation etc.) incurred twice

CRT combines best of SRT & lockstepping
Only requires multithreaded CMP cores

With per-thread store queues, ~13% improvement 
over lockstepping with 8-cycle checker latency

20(c) 2018, Mehdi Tahoori



Reliable Computing I: Lecture 10

Chip-Level Redundant Threading

21(c) 2018, Mehdi Tahoori

CPU A

Leading

Thread A

Trailing

Thread B

CPU B

Trailing

Thread A

Leading

Thread B

LVQ

Stores

LPQ

Stores

LPQ

LVQ


