

Today's Lecture

- Codes for storage and communication
 - Cyclic codes
 - Reed-Solomon codes
- Arithmetic codes
- Self-checking logic

(c) 2019, Mehdi Tahoori

Reliable Computing I: Lecture 7

Codes for Storage and Communication

- Cyclic codes are parity check codes with additional property that cyclic shift of codeword is also a codeword
 - if (Cn-1, Cn-2 ... C1, C0) is a codeword, (Cn-2, Cn-3, ... C0, Cn-1) is also a codeword
- Cyclic codes are used in
 - sequential storage devices, e.g. tapes, disks, and data links
 - communication applications
- An (n,k) cyclic code can detect single bit errors, multiple adjacent bit errors affecting fewer than (n-k) bits, and burst transient errors
- Cyclic codes require less hardware, in form of linear feedback shift registers
 - parity check codes require complex encoding, decoding circuit using arrays of EX-OR gates, AND gates, etc.

(c) 2019, Mehdi Tahoori

Reliable Computing I: Lecture 7

3

Cyclic Code and Polynomials

- Cyclic codes depend on the representation of data by a polynomial
- If $(C_{n-1}, C_{n-2} ... C_1, C_0)$ is a codeword, its polynomial representation is $C(x) = C_{n-1} x^{n-1} + C_{n-2} x^{n-2} + ... C_1 x + C_0$
- Cyclic codes are characterized by their generator polynomial g(x)
- g(x) is a polynomial of degree (n-k) for an (n,k) code, with a unity coefficient in (n-k) term
- g(x) is a factor of xⁿ-1, i.e., it divides it with zero remainder
 - if a polynomial with degree n-k divides xⁿ-1, then g(x) generates a cyclic code
- Example: for (7,4) code, g(x) = x³ + x + 1

(c) 2019, Mehdi Tahoor

Reliable Computing I: Lecture 7

Cyclic Redundancy Check (CRC)

- Considers dataword and codeword to be polynomials
 - E.g., i_0 , i_1 , i_2 , ..., $i_{n-1} \rightarrow i_0 + i_1X + i_2X^2 + ... + i_{n-1}X^{n-1}$
- Codeword = Dataword * Generator
 - C(X) = D(X) * g(X)
 - g(X) is pre-defined CRC polynomial
 - depends on particular code
 - Additions performed during multiplication are mod2
 - 0+0=0, 0+1=1+0=1, 1+1=0
- At receiver, divide n-bit codeword by CRC polynomial
 - D(X) = C(X) / g(X)
- If remainder is non-zero, we've detected an error

(c) 2019, Mehdi Tahoori

Reliable Computing I: Lecture 7

5

Basic Operations on Polynomials

Can multiply or divide one polynomial by another, follow modulo 2 arithmetic, coefficients are 1 or 0, and addition and subtraction are same

Multiplication
$$(x^4 + x^3 + x^2 + 1)(x^3 + x) = \frac{x^7 + x^6 + x^5 + x^3}{x^5 + x^4 + x^3 + x}$$

$$= x^7 + x^6 + x^5 + x^3$$

$$= x^7 + x^6 + x^5 + x^3$$

Division
$$x^4 + x^3 + x^2 + 1$$

$$x^5 + x^4$$

$$x^5 + x^4 + x^3 + x$$

$$x^3 + x$$
Remainder

(c) 2019, Mehdi Tahoori

Reliable Computing I: Lecture 7

Cyclic Code - Example

- Consider generator polynomial g(x) =x³ + x + 1 for (7,4) code
- Can verify g(x) divides x⁷ -1
- Given data word (1111), generate codeword
 - $d(x) = x^3 + x^2 + x + 1$
- Then $c(x) = g(x)d(x) = (x^3 + x^2 + x + 1)(x^3 + x + 1)$ = $x^6 + x^5 + x^3 + 1$
- Hence code word is (1101001)

(c) 2019, Mehdi Tahoori

Reliable Computing I: Lecture 7

7

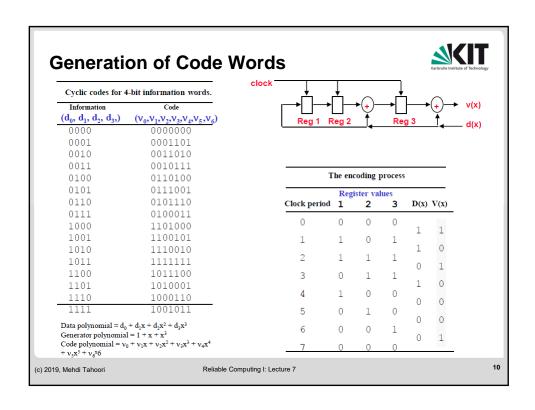
CRC Properties and Varieties

- An n-bit CRC check can detect all errors of less than n bits and all but 1 in 2ⁿ multi-bit errors
- Examples:
 - CRC-12: $g(X) = X^{12} + X^{11} + X^3 + X^2 + X + 1$
 - CRC-16: $g(X) = X^{16} + X^{15} + X^2 + 1$
- Ethernet uses CRC-32
 - More bits → better error detection capability

(c) 2019, Mehdi Tahoori

Reliable Computing I: Lecture 7

Circuit to Generate Cyclic Code Consider blocks labeled X as multipliers, and addition elements as modulo 2 Another representation is to replace multipliers by storage elements, adders by EX-OR gates Clock Reg 1 Reg 2 Reg 3 Reliable Computing: Lecture 7

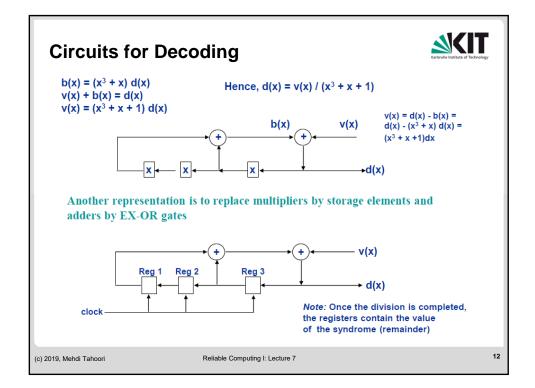


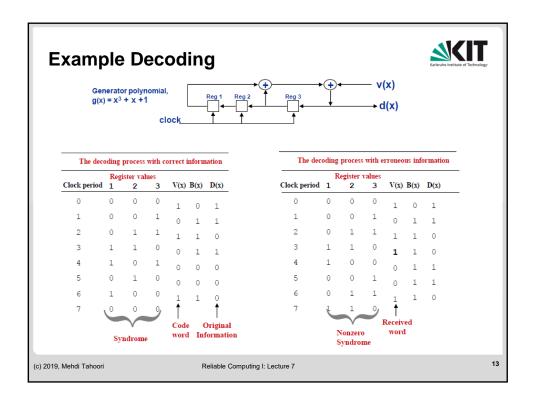
Decoding of Cyclic Codes

- Determine if code word (r_{n-1}, r_{n-2},, r₁, r₀) is valid
- Code polynomial $r(x) = r_{n-1} x^{n-1} + r_{n-2} x^{n-2} + ... r_1 x + r_0$
- If r(x) is a valid code polynomial, it should be a multiple generator polynomial g(x)
- r(x) = d(x) g(x) + s(x), where s(x) the syndrome polynomial should be zero
- Hence, divide r(x) by g(x) and check the remainder whether equal to 0

(c) 2019, Mehdi Tahoori

Reliable Computing I: Lecture 7





Systematic Cyclic Codes

- Previous cyclic codes were not systematic, i.e. data not part of code word
- To generate (n,k) systematic cyclic code, do the following:
 - Multiply d(x) by x^{n-k}, this is accomplished by shifting d(x) n-k bits
 - The code polynomial is $c(x) = r(x) + x^{n-k} d(x)$
 - Hence $x^{n-k} d(x) + r(x) = g(x)q(x)$, which is code word c(x) since it is a multiple of g(x)

(c) 2019, Mehdi Tahoori

Reliable Computing I: Lecture 7

Example of Systematic Cyclic Code

- Generator polynomial $g(x) = x^4 + x^3 + x^2 + 1$ of (7,3) code
- Data is 3 bits, n-k = 4 bits

Systematic	(7, 3) Cy	clic Code	Generated	by G	$(\mathbf{x}) = \mathbf{x}^4$	$+x^3+x^2+1$

Message Bit	S		Code Word
$\mathbf{m}_{2}\mathbf{m}_{1}\mathbf{m}_{0}$	x ⁴ M(x)	$C(x) = \text{Rem}[x^4M(x) \div G(x)]$	$x^4M(x) - C(x)$ $v_6v_5v_4v_3v_2v_1v_0$
000	0	0	0000000
001	X4	x^3+x^2+1	0011101
010	X ⁵	$x^2 + x + 1$	0100111
011	x^5+x^4	x^3+x	0111010
100	X6	$x^{3}+x^{2}+x$	1001110
101	x^6+x^4	x+1	1010011
110	$x^{6}+x^{5}$	$x^{3}+1$	1101001
111	x ⁶ +x ⁵ +x	x ⁴ x ²	1110100
	d(x) x n-k		

(c) 2019, Mehdi Tahoori

Reliable Computing I: Lecture 7

Reed-Solomon Codes

- Popular ECC for CDs, DVDs, wireless communications, etc.
- k data symbols, each of which is s bits
- r parity symbols, each of which is also s bits
- Can correct up to r/2 symbols that contain errors
 - Or can correct up to r symbol erasures
 - Erasure = error in a known symbol
- Denoted by RS(n,k)
- Common example: RS(255, 223) with s=8
 - $n = 255 \rightarrow 255$ codeword bytes
 - $k = 223 \rightarrow 223$ dataword bytes

(c) 2019, Mehdi Tahoori

Reliable Computing I: Lecture 7

Reed-Solomon Codes

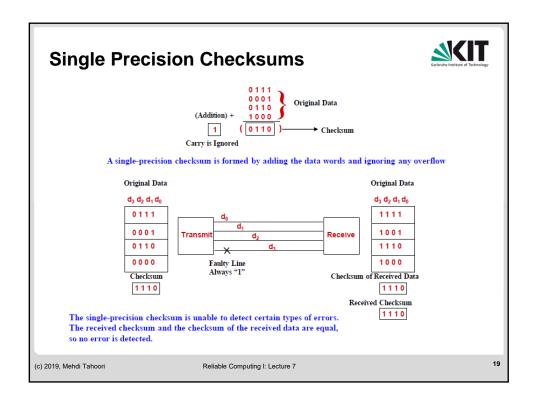
- There exist many flavors of RS codes, each of which is tailored to specific purpose
 - Cross-Interleaved Reed-Solomon Coding (CIRC) used in CDs can correct error burst of up to 4000 bits!
 - 4000 bits is roughly equivalent to 2.5mm on the CD surface
- RS codes are best for bursty error model
 - Just as good at handling 1 error in symbol or s errors in symbol
- Codewords created by multiplying datawords with generator polynomial (like CRC)

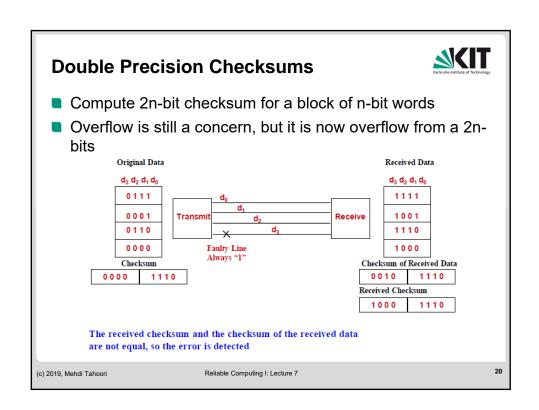
(c) 2019, Mehdi Tahoori

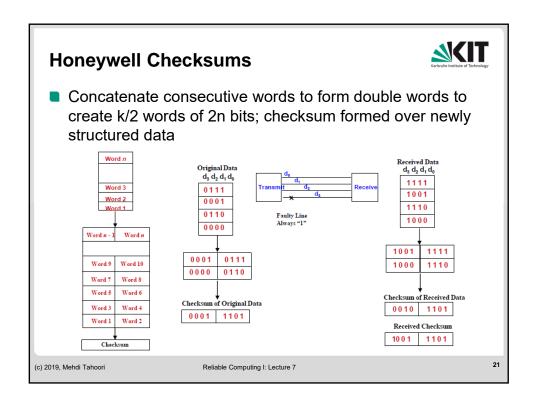
Reliable Computing I: Lecture 7

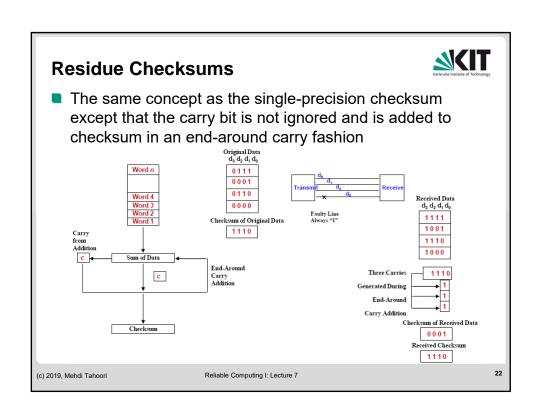
17

Checksum Codes - Basic Concepts The checksum is appended to block data when such blocks are transferred d_4 r_4 d_3 T₃ d_2 \mathbf{r}_2 Checksum on Checksum on Original Data Received Data d: = original word of data Received Version r_i = received word of data (c) 2019, Mehdi Tahoori Reliable Computing I: Lecture 7









Arithmetic Codes

- Useful to check arithmetic operations
- Parity codes are not preserved under addition, subtraction
- Arithmetic codes can be
 - Separate: check symbols disjoint from data symbols
 - Non-separate: combined check and data
- Several Arithmetic codes
 - AN codes, Residue codes, Bi-residue codes
- Arithmetic codes have been used in STAR fault tolerant computer for space applications

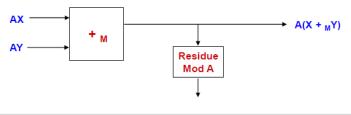
(c) 2019, Mehdi Tahoori

Reliable Computing I: Lecture 7

23

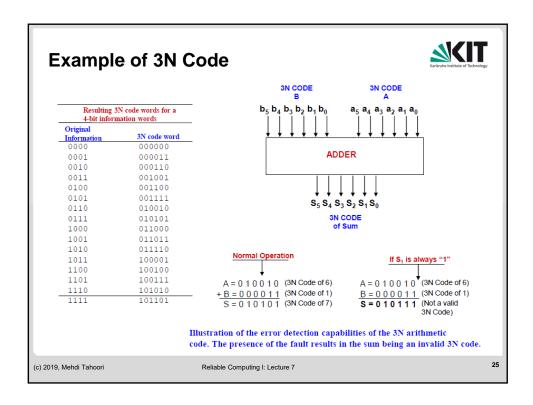
AN codes

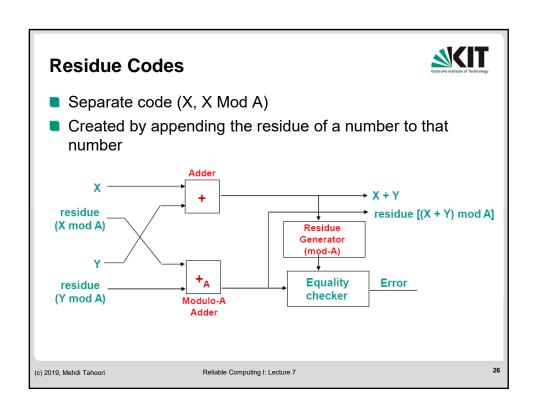
- Data X is multiplied by check base A to form A.X
- Addition of code words performed modulo M where A divides M
- A(X + MY) = AX + MAY
- Check operation by dividing the result by A
- If result = 0, no error, else error



(c) 2019, Mehdi Tahoori

Reliable Computing I: Lecture 7





Berger Codes

- Used in Control units as systematic codes
- The k check bits are the binary encoding of the number of zeros in the d-bit dataword
 - Berger codes are formed by appending $k = \lceil \log_2 (d+1) \rceil$ check bits and n = d + k
- Example:
 - $X=1 0 0 1 0 0 0 1 => k = \lceil \log_2 (8+1) \rceil = 4$
 - the number of 1s in this data is 3 (0011)
 - the complement of (0011) is (1100)
 - the resulting code word is: 1001 0001 1100

(c) 2019, Mehdi Tahoori

Reliable Computing I: Lecture 7

27

Berger Codes

- Can detect all single-bit errors and all unidirectional multi-bit errors
 - Unidirectional: all bit errors are either from 0→1 or from 1 → 0
- Good for detecting coupling faults
 - Change in one bit erroneously causes change(s) in other bit(s)
 - Models short circuits (including bridging faults)

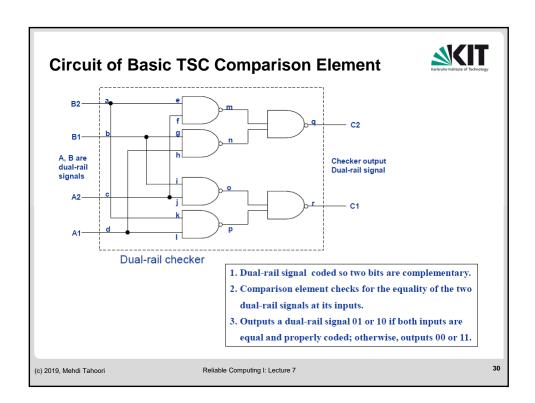
(c) 2019, Mehdi Tahoori

Reliable Computing I: Lecture 7

Self-Checking Circuits

- What properties/invariants can we build into circuits such that codeword inputs do not lead to codeword outputs in the presence of faults?
- Self-testing circuit
 - for every fault from a prescribed set there exists at least one valid input code word that will produce an invalid output code word when a single fault is present in the circuit
- Fault secure circuit
 - any single fault from a prescribed set results in the circuit either producing the correct code word or producing a non-code word, for any valid input code word
- Totally self-checking circuit (TSC)
 - the circuit is both fault secure and self-testing
 - all single faults are detectable by at least one valid code word input, and when a given input combination does not detect the fault, the output is the correct code word output

(c) 2019, Mehdi Tahoori Reliable Computing I: Lecture 7



Implementing EDC/ECC in Hardware

- Where does EDC/ECC get used?
 - Disk, CD-ROM
 - Memory (DRAM, SRAM)
 - Buses
 - Network
- Tradeoff between EDC and ECC
- ECC: Forward error recovery
 - Often on critical path, so can slow down even fault-free system
- EDC: Backward error recovery
 - Detecting error leads to recovery (can be slow)
- So would you use ECC or EDC in your L1 cache?
 - How about in DRAM?

(c) 2019, Mehdi Tahoori

Reliable Computing I: Lecture 7