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Today’s Lecture ﬂ("‘

@ Reliability evaluation
® Permanent and temporary failures

® Combinatorial modeling
® Series

Parallel

Series-parallel

Non-series-parallel

k-out-of-n

TMR vs. Simplex

Effects of voter, coverage
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Evaluation Criteria -\5‘("-

® A method of evaluation is required in order to compare
the redundancy techniques and make subsequent
design tradeoffs

® Modeling techniques are very vital means for obtaining
reasonable predictions for system reliability and
availability
® Combinatorial: series/parallel, K-of-N, nonseries/nonparallel
® Markov: time invariant, discrete time, continuous time, hybrid
® Queuing

® Using these techniques probabilistic models of
systems can be created and used to evaluate system
reliability and/or availability
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Basic Reliability Measures -\3‘("-

® Reliability: durational (default)

® R(t)=P{correct operation in duration (0,t)}
® Availability: instantaneous

® A(t)= P{correct operation at instant t)}

® Applied in presence of temporary failures

B A steady-state value is the expected value over a range
of time.

@ Transaction Reliability: single transaction
® R=P{a transaction is performed correctly}
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Mean time to ...

® Mean Time to Failure (MTTF):
® expected time the unit will work without a failure.
® Mean time between failures (MTBF):

® expected time between two successive failures.
® Applicable when faults are temporary.

B The time between two successive failures includes repair time
and then the time to next failure.

® Mean time to repair (MTTR):
B expected time during which the unit is non-operational.
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B Time between failures: time to repair + time to

Failures with Repair

next failure
“failure™ operational operational
) e
00! P
9 TBF e
Under repair Under repair
“repair”

® MTBF =MTTF + MTTR
® MTBF, MTTF are same same when MTTR = 0
B Steady state availability = MTTF / (MTTF+MTTR)
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Mission Time (High-Reliability Systems) -\N(IT

® Reliability throughout the
mission must remain above
a threshold reliability Ry, .
® Mission time T,: defined as **1
the duration in which
R(t) =2 Ry,

® R,, may be chosen to be
perhaps 0.95. 0

R(t)

0.25

A

Tu

® Mission time is a strict time
measure, used only for very
high reliability missions.
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Two Basic cases -\3("-

® We next consider two very important basic cases
that serve as the basis for time-dependent
analysis.

1. Single unit subject to permanent failure

® We will assume a constant failure rate to evaluate
reliability and MTTF.

2. Single unit with temporary failures

® System has two states Good and Bad, and transitions
among them are defined by transition rates.

@ Both of these are example of Markov processes.
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Single Unit with Permanent Failure -\N(IT

® Assumption: constant failure-rate A Z(t)=A
® Reliability = R(t) = et
Good Bad
_ (% _ (® -Atgy 1
W MTTF = [ R(t)dt = [ e *dt = 3 o .
« Ex1:aunithas MTTF
=30,000 hrs. Find failure rate. ! T
A=1/30,000=3.3x 1 0-%/hr :
« Ex 2: Compute mission time Ty N T
if Ry, =0.95.
e* M =095 Ty=- In(0.95)/ &

=0.051/ A 0-37 !
0254 — — — P Dg—-+——— -1 ——
«  Ex 3: Assume A=3.33x107 and |
Ry, =0.95find Ty I I

R(t)
I
[
|

Ans: Ty = 1538.8 hrs 0 1;;\. 100 150
(compare with MTTF =30,000) time
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Single Unit: Temporary Failures _\ﬂ(IT

® Temporary: intermittent, transient, permanent with repair

bad
good 1

® po(t) = po(0)e~ 1 425 (1 — e~ 1))
" p(0) =1-po(®)

® Availability A(t) = py(t)

® Steady-state availability (t » o) A(t) = -—

® Reliability: R(t) = P{no failure in (0,t)} = et <| KD

First failure

1
® MTTF = N ,
. Good
B Same as permanent failure @
(c) 2019, Mehdi Tahoori Reliable Computing I: Lecture 5 10

KIT — University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association



AT

Karlsruher Institut far Technologie

Reliable Computing | — Lecture 5

Combinatorial Modeling -\N(IT

@ System is divided into non-overlapping modules

® Each module is assigned either a probability of working, P;, or a
probability as function of time, R(t)

® The goal is to derive the probability, Py, or function R (t) of
correct system operation

® Assumptions:
® module failures are independent

B once a module has failed, it is always assumed to yield incorrect
results

® system is considered failed if it does not satisfy minimal set of
functioning modules

B once system enters a failed state, other failures cannot return system
to functional state

® Models typically enumerate all the states of the system that
meet or exceed the requirements of correctly functioning system
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Combinatorial Reliability _\ﬂ(IT

® Objective is: Given a

B systems structure in terms of its units

| reliability attributes of the units

® some simplifying assumptions
® We need to evaluate the overall reliability measure.
® There are two extreme cases we will examine first:

® Series configuration

@ Parallel configuration

® Other cases involve combinations and other configurations.

® Note that conceptual modeling is applicable to R(t),
A(t), R(t). A system is either good or bad.
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Series configuration

@ Assume system has n components, e.g. CPU,
memory, disk, terminal
@ All components should survive for the system to

operate correctly
R, = P{U, good (U, good (U, good }

=P{U, g}P{U, g} P{U; g}
= RR,R,

@ Reliability of the system
R, (1)= HRr (r) where Ri(t) is the reliability of module i
i=1

13
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Series configuration
® For exponential failure rate of each component

—A;t

If Ri (T) =¢ '
thenR (7) = [Me ' = g A tAar 4,k

n -
ey —Ag,
Rserieé- (f ) =€ Z":l/Lz —e system T

Where Ao = ZLI A corresponds to the failure rate of

the system
® System failure rate is the sum of individual failure rates:

A=A+, 441,
® Mean time to failure: MTTE . =

14
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“A chain is as strong as it's weakest link”? -\ﬂ("-

B Let us see for a 4-unit series '~
system ANy

® Assume R1=R2 =R3=0_95, 0.75 4 \\‘
R,=0.75 | .

a RS:O643 10 units -
® Thus a chain is slightly ) :
weaker than its weakest link! o2

® The plot gives reliability of a -
10-unit system vs a single 0 - s
system. Each of the 10 units  * * ~* ~© %
are identical.

® More units, less reliability
if X, =lifetime of component i then
0= E[X]=min{E[X,]}

e . &
~Single unit
S

cliability

0359
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Parallel Systems _\ﬂ(l'l'

® Assume system with spares

@ As soon as fault occurs a faulty component is replaced by
a spare

® Only one component needs to survive for the system to
operate correctly

® Prob. of module i to survive = R, [1 ]

® Prob. of module i not to survive = (1 -R)) rm

® Prob. of no modules to survive = J
® (1-R)(1-Ry)...(1-R)) |

® Prob [at least one module survives] =
® 1 - Prob [none module survives]

@ Reliability of the parallel system

Rpami.’a.’(r) =1.0— H (l 0- Ri (I))
i=1
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Parallel Systems -\N(IT

E(X) =f [1-(1-e™")"dt

Il (1
YT
In(n)
)
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Parallel Configuration: Example _\ﬂ("’

® Problem: Need system reliability R, =1 — €
® How many parallel units are needed

a IfR1 =R2 = ... :Rm, Rm <RS
® Solution: 1-R =(1-R )"
e=(1-R )"
Ine
X=—
In(1-R,)
Assume R, =0.9999 (€=0.0001),
R,=09
4
gives x =4.

(c) 2019, Mehdi Tahoori Reliable Computing I: Lecture 5 18

KIT — University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association



AT

Karlsruher Institut fir Technologie Reliable Computing | — Lecture 5

Series-Parallel Systems -\N(IT

® Consider combinations of series and parallel systems

® Example, two CPUs connected to two memories in
different ways

R gs=1- (1-Ra Rb) (1-Rc Rd)

cPU Memory
o —
R o= (1-(1-Ra)(1-Rc)) (1-(1-Rb)(1- Rd)) - }—
[ P H e —
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Non-Series-Parallel-Systems _\ﬂ(l'l'

® Often a “success” diagram is used to represent the
operational modes of the system

Each path from X to Y represents
a configuration that leaves the system
operational

® Reliability of the system can be derived by expanding
around a single module m

® R, = Ry, P(system works | m works) +
(1-R.,) P(system works | m fails)

® where the notation P(s | m) denotes the conditional
probability “s given m has occurred”
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o]

B (* short ) works, C (* short ) works

B (“ short ”) works, C (** open 7) fails

B (“ open ”) fails

Reduction with B and C replaced

Reduced model with B replaced

P(system works|B works) =
ReiRpll - (1 -R)(1 -Rp)]}
+ (1 - Ro)(RaRpRE)

R,y = Ry P(system works|B works)
+(1-Rg) {Rp[l - (1 - RyRe)(1 - ReRe)]}

Letting R, ...R, =R, yields R, =RS_-3R5_+R* +2R®_

SVS
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Non-Series-Parallel-Systems -\3("-

® For complex success diagrams, an upper-limit
approximation on R, can be used

® An upper bound on system reliability is:
R, <1-TT(~R,,,,) Roanis the serial refiability of path i

® The above equation is an upper bound because the
paths are not independent.

® That s, the failure of a single module affects more than
one path.
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Non-Series-Parallel-Systems -\N(IT
® Example

Reliability block diagram (RBD)
of a system

Rsys <1- (l - RARBRCRD )(1 - RARERD )(l - RFRCRD )
Rsys S 2Rrie +R}1 _Rri - ZR; +R11rro
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k-out-of-n Systems _\ﬂ(l'l'

® Assumption:

® we have n identical modules with statistically
independent failures.

® k-out-of-n system is operational if
® k of the n modules are good
. g . n ,” . .
W System reliability thenis  p _Z( _]p‘(l _ pyr

kin —
i=k
® Where p is the probability that one unit is good
® R, is the summations of the probabilities of all good
combinations

ny n! . .
a (l) = T - choose i good systems out of n

(c) 2019, Mehdi Tahoori Reliable Computing I: Lecture 5 24

KIT — University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association



AT

Karlsruher Institut far Technologie Reliable Computing | — Lecture 5
Triple Modular Redundancy -\N(IT
@ 2-out-of-3 system
3 3 ‘ - L
RTMR:Z(JRF(I_R)' ’ -
i=2
=3R*(I-R)+ R’ 3
=3R* 2R’

® Where R is the reliability of a single module.

® This assumes that the voter is perfect

B a reasonable assumption if the voter complexity is much less
than an individual module.
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TMR vs. Simplex _\ﬂ(IT
B System reliability vs. module reliability

1

|."
L. 0751
£ 05
2
* 025 1 :
- - —+— k-out-of-n
--@--ogingle
0 T
0 0.25 0.5 075 1
Module Reliability

® What is the conclusion?
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TMR vs. Simplex: MTTF

Rsi.mplex(t) =¢ it

MITE o= [ € "dt =1/ 7

MTTF = [ Ry (1)t
0

3 2
M e =555

= [(@e = 2e™ 'yt
0

\ I

@ Compare reliability of simplex and TMR systems

3 3) a —at
Rmm(f)= e +[2}3_"‘ (1-e)

5

64

MTTF,, .. > MTTF,,,

simplex
(c) 2019, Mehdi Tahoori Reliable Computing I: Lecture 5 27
TMR vs. Simplex: MTTF AT
1
09 4
----- TMR
0.8
07
2 06
E 05
€ o4l |
0.3 :
02 4 | s Simplex
0.1 |
0 S E— . —— . = -
0 05 1 15 2 25 3 35 4 45 5
A, lambda * t
Rox()=R(t) 0=r=y,
Rom(D=R() (,=t<w
2 0.7
wherer, = —— ~ —
A A
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B Mission time
R _ 36—2/1 Im 28—3/1 I'm

Th —
® A numerical solution for t, can be obtained
iteratively
® Ex: A=1/year,R =0.95
MTTF ¢

single  lyr 0.05
TMR  0.83 0.145

B Thus TMR mission time is much better.
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TMR vs. Simplex: Availability _\ﬂ(IT

® Temporary faults: steady state

Apg =3A7-2A% A=_#
A+u

A
Ex:Z=0.01= A=0.9901
U

= A =001
Aqyg = 0.9997 = Anygr = 0.0003

® Thus TMR can greatly reduce down-time in presence
of temporary faults
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TMR vs. Simplex: Summary -\N(IT

® Instead of MTTF, look at mission time

@ Reliability of K-out-of-N systems very high in the
beginning
® spare components tolerate failures

@ Reliability sharply falls down at the end

® system exhausted redundancy, more hardware can
possibly fail

® Such systems useful in aircraft control
® very high reliability, short time
® 0.99999 over 10 hour period
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System with Backup: Effect of Coverage _\ﬂ(IT

® Failure detection is not perfect
® Reconfiguration may not succeed L Yy J

B Attach a coverage “c”

R. = P{U, good}+
P{U, hastaken over \U,| failed }P{U, failed )
=R +RC(I-R)
where C = P{failure detected and successful switchover}

® General case, n-1 spares

n—1

Rt = Rmzcw(l - Rm )f
i=0
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System with Backup: Effect of Coverage -\N(IT

® If coverage is 100%, then given low module
reliability, can increase system reliability arbitrarily

® With low coverage, reliability saturates

Rm=09 Rm=07 Rm=05

C=0.99. n=2 0.989 0.908 0.748

C=0.99. n=4 0.999 0.988 0931

C=0.99. p=mf | 0.999 0.996 0.990

C=08.n=2 0.572 0.868 0.700

C=03 .04 0.978 0918 0812

C=0.8, v=mf 0.978 0921 0.833
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Effect of Voter T
Karlsruhe Institute of Techaclogy

® Previous expression for reliability assumed voter
100% reliable

® Assume voter reliability R,

[F'S]

2

Rpmw =Ry (R:?z +(

R:(1-R))) / \/ —
s S0

(c) 2019, Mehdi Tahoori Reliable Computing I: Lecture 5 34

KIT — University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association



AT

Karlsruher Institut fir Technologie Reliable Computing | — Lecture 5

TMR+Spares -\N(IT

® TMR core, n-3 spares (assume same failure rate)

® System failure when all but one modules have failed.
® If we start with 3 in the core and 2 spares, the sequence is:
| 3+2 - 3+1 - 340 —» 2+0 — failure

® Reliability of the system then is
R.=R,,[1-nR(1-R)™'-(1-R)"]

® Where R is reliability of a single module and R, is the
reliability of the switching circuit overhead.

® R, should depend on total number of modules n, and
relative complexity of the switching logic.

@ Let us assume that R,,=(R?)",
® where a is measure of relative complexity, generally a <<1
® R =R [1-nR(1-R)™'-(1-R)"]
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