

Testing Digital Systems I

Lecture 3: Quality Models and Yield Analysis

Instructor: M. Tahoori

Copyright 2017, M. Tahoori

TDS I: Lecture 3

1

VLSI Chip Yield

- A manufacturing defect is a finite chip area with electrically malfunctioning circuitry caused by errors in the fabrication process.
- A chip with no manufacturing defect is called a good chip.
- Fraction (or percentage) of good chips produced in a manufacturing process is called the *yield*. Yield is denoted by symbol Y.
- Cost of a chip:

Cost of fabricating and testing a wafer

Yield x Number of chip sites on the wafer

Copyright 2017, M. Tahoori

TDS I: Lecture 3

2

Definitions

- Quality Level, QL
 - Fraction of Parts Passing Test that are Good
- Defect Level, DL = 1 QL
 - Fraction of Parts Passing Test that are Good BAD
 - Measured in DPM, Defects per Million
 - Typical Claim is Less than 200 DPM (0.02 %)
- Yield, Y
 - Fraction of Manufactured Parts that are Good
 - Typically 10 to 90 %
- Reject Ratio
 - Fraction of Manufactured Parts that Fail Test
 - Used to Estimate Yield

Copyright 2017, M. Tahoori

TDS I: Lecture 3

3

Determination of DL

- From field return data:
 - Chips failing in the field are returned to the manufacturer.
 - The number of returned chips normalized to one million chips shipped is the DL.
- From test data:
 - Fault coverage of tests and chip fallout rate are analyzed.
 - A modified yield model is fitted to the fallout data to estimate the DL.

Copyright 2017, M. Tahoori

TDS I: Lecture 3

4

Test Thoroughness

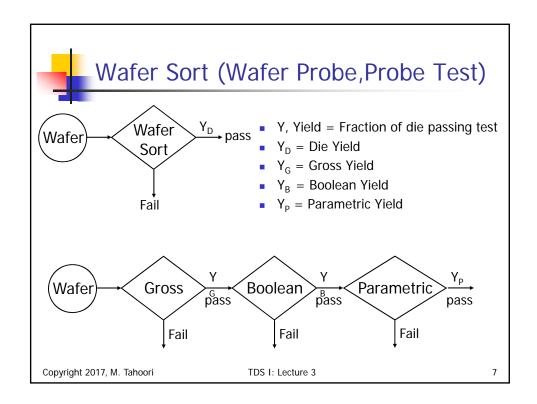
- Measured by
 - Test transparency, TT
 - Fraction of Defects NOT Detected by Test
 - Estimated by FAULTS Missed by Test
 - Faults are Logical Models of Defects
- Required Test Transparency
 - Depends on Yield and Acceptable Quality Level

Copyright 2017, M. Tahoori

TDS I: Lecture 3

Estimating Board Quality Level

- N Components per Board
- Component Defects are Identical and Independent
- Each Component has Probability, q, of being Defective
- Probability that Board has no Defective Component is:
 - $P = (1 q)^N$


N	DL	q	P %	1-P
40	10,000 DPM	10 ⁻² or 1 %	66.9	33.1
200	10,000 DPM	10 ⁻² or 1 %	13.4	86.6
40	1000 DPM	10 ⁻³ or 0.1 %	96	4
200	1000 DPM	10 ⁻³ or 0.1 %	82	18
40	100 DPM	10 ⁻⁴ or 0.01 %	99.6	0.4
200	100 DPM	10 ⁻⁴ or 0.01 %	98	2

Copyright 2017, M. Tahoori

TDS I: Lecture 3

Lecture 3 3

5

Wafer Sort

- Gross Test
 - Test for Gross Defects Idd, Pin Leakage,...
- Parametric Test
 - Measure analog parameters of device
 - DC Voltage levels, drive current, power,...
 - AC Rise, fall, delay times
- Boolean Test
 - Digital test of Logic Operation
 - Called Functional Test by Chip Testers
 - Based on Fault Model

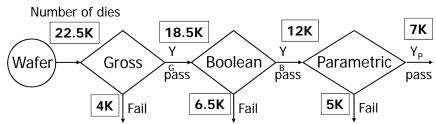
Copyright 2017, M. Tahoori

Lecture 3

TDS I: Lecture 3

Wafer Sort Definitions

- Die yield, Y_D,
 - Fraction of Die that are defect-free
 - ESTIMATED by Fraction of Die that pass Wafer Sort
- Boolean (functional) defect
 - Defect that Changes Function Realized by Die
- Boolean (functional) Yield, Y_B,
 - Fraction of Die that are free of Boolean defects
 - ESTIMATED by Fraction of Die that Pass Boolean Test
- Boolean (functional) test
 - Test for Boolean (functional) Defects


Copyright 2017, M. Tahoori

TDS I: Lecture 3

9

Motorola6802 Wafer Sort Experiment

- Single Stuck-Fault Coverage = 99.9 %
- $Y_B = 12 / 18.5 = 65.167 \%$
- $Y_G = 18.5 / 22.5 = 82.2 \%$
- $Y_p = 7 / 12.00 = 58 \%$

Copyright 2017, M. Tahoori

TDS I: Lecture 3

10

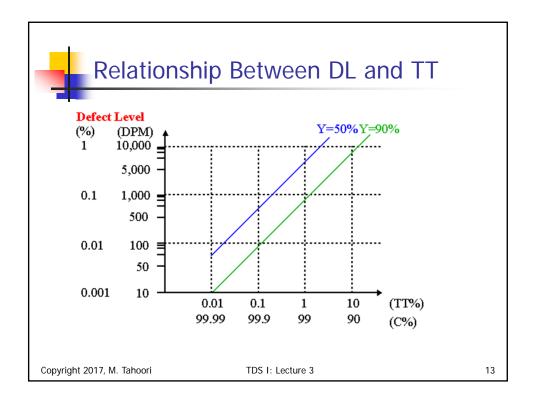
What If

- Single stuck-fault coverage were 96.6 % ?
 - Theory Predicts:
 - DL = 14,454 DPM or 174 Bad Die Pass Boolean Test
 - Experiment shows:
 - DL = 8,471 DPM or 103 Bad Die Pass Boolean Test

Copyright 2017, M. Tahoori

TDS I: Lecture 3

11


Quality Level Dependence On Y & TT

- Theorem:
 - The Boolean Quality Level achieved by a test with Boolean Test Transparency, TT, for a process of Boolean Yield, Y, is given by:
 - $OI = Y^{TT}$
- Corollary:
 - For Tests that Result in Defect Levels, DL, less than 1000 DPM this can be simplified to:
 - DL = (-In Y) TT
 - And further simplified for Y ≥ 90 % to:
 - DL = (1 -Y) TT

Copyright 2017, M. Tahoori

TDS I: Lecture 3

12

Derivation Of Theorem (1)

- n Possible Point Defects on Chip
- Assumption: defects are independent and equally distributed
- m of the n Defects Detected by Test Set, (n m) Not Detected
- TT is (n m)/n = 1 (m / n)
- p is Probability of a Defect Occurring
- A is Event that Die has no Defects
 - Yield $Y = P[A] = (1 p)^{n}$
- B is event that die passes test, none of the m defects on die
 - $P[B] = (1 p)^{m}$
 - if a chip is free of defects, it is free of m tested defects
 - $P[AB] = P[A] = (1 p)^{n}$

Copyright 2017, M. Tahoori

TDS I: Lecture 3

14

Derivation Of Theorem (2)

- QL is given by the probability that a chip is free of all n defects when it is known that it is free of any of the m defects detected by the test process
- QL = Number of defect-free parts that pass the test

 Total number of parts that pass the test
- QL = P[A|B] = P[AB]/P[B] = P[A]/P[B]
- $= (1 p)^{(n m)} = (1 p)^{n(1 m/n)} = Y^{TT}$

Copyright 2017, M. Tahoori

TDS I: Lecture 3

15

Simplifications (1)

- DL less than 1,000 DPM
 - DL $< 10^{-3} \Rightarrow$ QL = 1 DL = Y^{TT} > 0.999
 - $|TT InY| < |In (0.999)| = 10^{-3}$
 - Series expansion of QL = Y^{TT}

• QL =
$$Y^{TT}$$
 = 1 + TT lnY + (TT lnY)² / 2 + (TT lnY)³ / 3! + ...

- Since |TT InY| < 10⁻³
 - \blacksquare | (TT lnY)² / 2 + (TT lnY)³ / 3! + ...| < 10⁻⁶
- QL ≈ 1 + TT lnY
- DL ≈ TT (- In Y)
- TT ≈ DL/(ln Y)

Copyright 2017, M. Tahoori

TDS I: Lecture 3

16

Simplifications (2)

- DL less than 1,000 DPM and Y = 90 %
 - In Y = $(Y 1) (Y 1)^2 / 2 + (Y 1)^3 / 3 ...$

$$- \ln Y = (1 - Y) + (1 - Y)^2 / 2 + (1 - Y)^3 / 3 + ...$$

- Y = 90 % ⇒
 - (1 Y) < 0.1 and
 - $| 1 / 2 (1 Y)^2 + 1 / 3 (1 Y)^3 ... | < 10^{-2}$

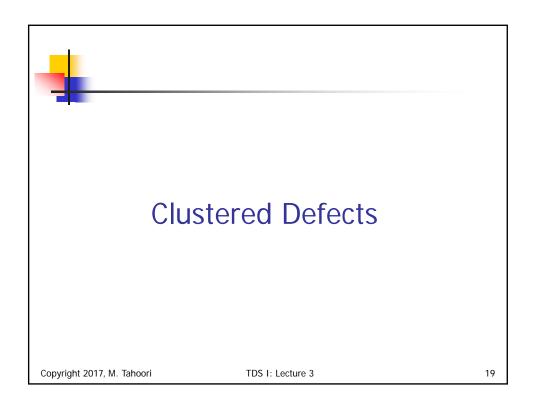
•
$$(1 - Y) < (- \ln Y) < (1 - Y) + 10^{-2}$$

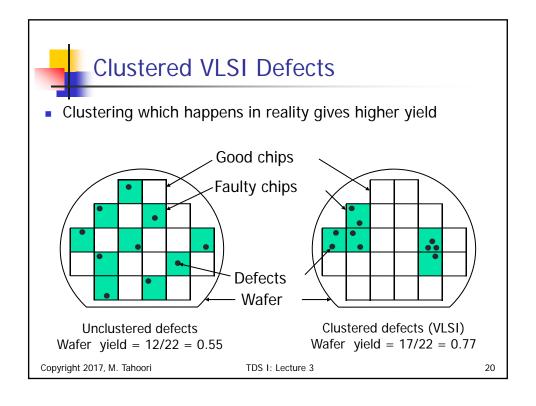
DL \approx TT $(- \ln Y) \approx$ TT $(1 - Y)$

Copyright 2017, M. Tahoori

TDS I: Lecture 3

17


Example


Required TT and coverage (C) for DL=200 DPM

Υ%	10	50	75	90	95	99
-In Y	2.3	0.69	0.288	0.105	0.05	0.01
1/(-ln Y)	0.434	1.44	3.48	9.49	19.5	99.5
TT%	0.008	0.03	0.07	0.2	0.4	2
С%	99.992	99.97	99.93	99.8	99.6	98

Copyright 2017, M. Tahoori

TDS I: Lecture 3

Clustering Effect

- Cluster THEOREM:
 - The Boolean Quality Level achieved by a test
 - with Fault Coverage C,
 - for a process of Boolean Yield, Y

$$QL = \frac{(1 - C)(1 - Y)e^{-(n - 1)C}}{}$$

$$Y+(1-C)(1-Y)e^{-(n-1)C}$$

where n is average number of faults on a faulty die

Copyright 2017, M. Tahoori

TDS I: Lecture 3

21

What If (Motorola6802 Experiment)

- Single stuck-fault coverage were 96.6 % ?
 - Uniform Theory Predicts:
 - DL = 14,454 DPM or 174 Bad Die Pass Boolean Test
 - Cluster Theory with n=1 Predicts:
 - DL = 17,849 DPM or 217 Bad Die Pass Boolean Test
 - Cluster Theory with n=2 Predicts:
 - DL = 6,869 DPM or 84 Bad Die Pass Boolean Test
 - Experiment shows:
 - DL = 8,471 DPM or 103 Bad Die Pass Boolean Test

Copyright 2017, M. Tahoori

TDS I: Lecture 3

Yield Parameters

- Defect density (d)
 - Average number of defects per unit of chip area
- Chip area (A)
- Clustering parameter (α)
- Negative binomial distribution of defects,

p(x) = Prob (number of defects on a chip = x)

where Γ is the gamma function $\alpha = 0$, $\rho(x)$ is a delta function (max. clustering) $\alpha = \infty$, $\rho(x)$ is Poisson distr. (no clustering)

Copyright 2017, M. Tahoori

TDS I: Lecture 3

23

Yield Equation

Y = Prob (zero defect on a chip) = p(0)

$$Y = (1 + AdI \alpha)^{-\alpha}$$

Example: Ad = 1.0, $\alpha = 0.5$, Y = 0.58

Unclustered defects: $\alpha = \infty$, $\gamma = e^{-Ad}$

Example: Ad = 1.0, $\alpha = \infty$, Y = 0.37

too pessimistic!

Copyright 2017, M. Tahoori

TDS I: Lecture 3

24

Modified Yield Equation

- Three parameters:
 - Fault density, f
 - Average number of stuck-at faults per unit chip area
 - Fault clustering parameter, β
 - Stuck-at fault coverage, T
- The modified yield equation:

$$Y(T) = (1 + TAf/\beta)^{-\beta}$$

Assuming that tests with 100% fault coverage (T=1.0) remove all faulty chips,

$$Y = Y(1) = (1 + Af/\beta)^{-\beta}$$

Copyright 2017, M. Tahoori

TDS I: Lecture 3

25

Defect Level

$$DL(T) = \frac{Y(T) - Y(1)}{Y(T)}$$

$$= 1 - \frac{(\beta + TAf)^{\beta}}{(\beta + Af)^{\beta}}$$

- T is the fault coverage of tests,
- Af is the average number of faults on the chip of area A
- β is the fault clustering parameter
- Af and β are determined by test data analysis.

Copyright 2017, M. Tahoori

TDS I: Lecture 3

26

Summary

- VLSI yield depends on two process parameters,
 - Defect density (d)
 - Clustering parameter (α)
- Yield drops as chip area increases
 - low yield means high cost
- Fault coverage measures the test quality
- Defect level (DL) or reject ratio is a measure of chip quality
- DL can be determined by an analysis of test data
- For high quality: DL < 500 DPM,
 - Fault coverage should be ~ 99%

Copyright 2017, M. Tahoori

TDS I: Lecture 3

27