
Reliable Computing I – Lecture 12

KIT – University of the State of Baden-Wuerttemberg and 
National Laboratory of the Helmholtz Association

KIT – University of the State of Baden-Wuerttemberg and 
National Research Center of the Helmholtz Association

INSTITUTE OF COMPUTER ENGINEERING (ITEC) – CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC)

www.kit.edu

Reliable Computing I

Lecture 12: Software Fault Tolerance
Instructor: Mehdi Tahoori

Reliable Computing I: Lecture 12

Why Software Fault Tolerance ? 

Can increase software reliability via fault 
avoidance using software engineering and testing 
methodologies 

Large and complex systems 
fault avoidance not successful 

Redundancy in software may be needed to detect, 
isolate, and recover software failures 

Software is difficult to prove correct 

2(c) 2017, Mehdi Tahoori



Reliable Computing I – Lecture 12

KIT – University of the State of Baden-Wuerttemberg and 
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 12

Hardware vs. Software Faults

3(c) 2017, Mehdi Tahoori

Hardware faults
Faults time-dependent 

Duplicate hardware 
detects 

Mainly due to random 
cause 

Software faults
Faults time-invariant 

Duplicate software not 
effective 

Complexity is the main 
cause

Reliable Computing I: Lecture 12

Sources of Unreliability: Software Failures

High complexity of software is the major 
contributing factor of Software Reliability problems 

Software failures causes
Errors 
Ambiguities 
Oversights or misinterpretation of the specification 

The software is supposed to satisfy

Carelessness or incompetence in writing code
Inadequate testing
Incorrect or unexpected usage of the software 
Other unforeseen problems…

4(c) 2017, Mehdi Tahoori



Reliable Computing I – Lecture 12

KIT – University of the State of Baden-Wuerttemberg and 
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 12

Experiences with Current Software 

Many computer crashes are due to software 

Even though one expects software to be correct, it 
never is 

Mature software exhibits fairly constant failure 
frequency 

Number of failures is correlated with 
Execution time 

Code density 

Software timing, synchronization points 

5(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 12

Experiences with Current Software 

6(c) 2017, Mehdi Tahoori



Reliable Computing I – Lecture 12

KIT – University of the State of Baden-Wuerttemberg and 
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 12

Difficulties

Improvements in software development 
methodologies reduce the incidence of faults, yielding 
fault avoidance 

Need for test and verification 

Formal verification techniques, such as proof of 
correctness, can be applied to rather small programs 

Potential of faulty translation of user requirements 

Conventional testing is hit-or-miss. 
“Program testing can show the presence of bugs but never 
show their absence,” - Dikstra, 1972. 

There is a lack of good fault models 

7(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 12

Approaches to Software Fault Tolerance 

ROBUSTNESS: The extent to which software continues to operate 
despite introduction of invalid inputs. 

Example: 
1. Check input data 

ask for new input 
use default value and raise flag 

2. Self checking software 

FAULT CONTAINMENT: Faults in one module should not affect other 
modules. 

Example: 
Reasonable checks 
Watchdog timers 
Overflow/divide-by-zero detection 
Assertion checking 

FAULT TOLERANCE: Provides uninterrupted operation in presence of 
program faults through multiple implementations of a given function 

8(c) 2017, Mehdi Tahoori



Reliable Computing I – Lecture 12

KIT – University of the State of Baden-Wuerttemberg and 
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 12

Approaches to Software FT

N Version Programming

Recovery Blocks

Process Pairs

Robust Data Structures

…

9(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 12

Concepts of N-Version Programming 

N ≥ 2 versions of functionally equivalent programs 
“Independent” generations of programs 

carried out by N groups of individuals who do not talk to each other 
with respect to programming process 

different algorithms, different programming languages, translation

Initial specification formally done in some formal spec. 
language 

states unambiguously the functional requirements 
leaves widest possible choice of implementation 

By making the development process diverse it is hoped 
that the versions will contain diverse faults 
The inventors of NVP emphasized that: 

“the definition of NVP has never postulated an assumption of 
independence and that NVP is a rigorous process of software 
development” 

10(c) 2017, Mehdi Tahoori



Reliable Computing I – Lecture 12

KIT – University of the State of Baden-Wuerttemberg and 
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 12

NVP Basic Model

11(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 12

Independence in N-Version Programming ?

Do the N versions of a program fail independently 
(similar to hardware)? Are faults unrelated? 

Does Prob (failure of N-version system) = Prob
(failure of one version)/N ?? 

If so, then the system reliability can be very high 

Why such an assumption may be false? 
People make same mistakes, e.g. incorrect treatment of 
boundary conditions 

Some parts of a problem more difficult than others 
statistics show similarity in programmer’s view of “difficult” 
regions 

12(c) 2017, Mehdi Tahoori



Reliable Computing I – Lecture 12

KIT – University of the State of Baden-Wuerttemberg and 
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 12

Limitation of N-Version Programming 

All N -versions originate from the same initial 
specifications whose correctness, completeness, 
and unambiguity should be assumed 

Use formal correctness proofs on specs, rather than 
proofs on implementations 
Exhaustive validation 

Based on an assumption that software faults are 
distinguishable: 

faults that will cause disagreement between versions at 
specified voting points might be a result of independent 
programming efforts to remove identical software 
defects 

13(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 12

Concepts of Recovery Blocks 

Characteristics: 
Incorporates general solution to the problem of switching to spare 

Explicitly structures a software system so that extra software for 
spares and error detection does not reduce system reliability 

First to consider a single sequential process; later extended to 
Multiple processes within one system 

Multiple processes in multiple systems  distributed recovery blocks 

Can view progress as sequences of basic operations, 
assignments to stored variable 
Structured program has BLOCKS of code to simplify 
understanding of the functional description 
Choose blocks as units for error detection and recovery. 

14(c) 2017, Mehdi Tahoori



Reliable Computing I – Lecture 12

KIT – University of the State of Baden-Wuerttemberg and 
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 12

Recovery Blocks Basic Model

15(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 12

Acceptance Tests 

Function: ensure the operation of recovery blocks is 
satisfactory 
Should access variables in the program, NOT local to 
the recovery block, since these cannot have effect 
after exit. Also, different alternates use different local 
variables. 
Need not check for absolute “correctness” -
cost/complexity trade-off 
Run-time overheads should be LOW 
NO RESIDUAL EFFECTS should be present, since 
variables, if updated, might result in passing of 
successive alternates 

16(c) 2017, Mehdi Tahoori



Reliable Computing I – Lecture 12

KIT – University of the State of Baden-Wuerttemberg and 
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 12

Restoration of System State 

Restoring system state is automatic 

Taking a copy of entire system state on entry to 
each recovery block is too costly 

Use Recovery Caches or “Recursive” Caches 

When a process is to be backed up, it is to a state 
just before entry to primary alternate 

Only NONLOCAL variables that have been 
MODIFIED have to be reset 

17(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 12

Recovery Blocks vs. NVP

Advantages of Recovery Block 
Most software systems evolve by replacement of some 
modules by new ones - can be used as alternates 

Nice hierarchical design - structured approach 

Disadvantages of Recovery Block 
System state must be saved before entry to recovery block --
excessive storage 

Difficult to handle multiple processes -- might have domino 
effect 

Difficult to undo effects in real-time systems 

Effectiveness of acceptance test 

Higher coverage is more complex 

Lack of formal method to check 

18(c) 2017, Mehdi Tahoori



Reliable Computing I – Lecture 12

KIT – University of the State of Baden-Wuerttemberg and 
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 12

Recovery Blocks vs. NVP

Advantages of N-Version Programming 
Immediate masking of software faults -- no delay in operation 

Self-checking (acceptance tests) not required 

Conventional fault tolerant systems HW and SW have 
redundant hardware e.g. TMR (easier to include N-version 
software on redundant hardware) 

Disadvantages of N-Version Programming 
How to get N-versions? 

Impose design diversity, since randomness does not give 
uncorrelated software faults 

Extremely dependent on input specifications (formal 
correctness proofs…) 

19(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 12

Process Pairs

Applicability
Permanent and transient hardware and software failures

Loosely coupled redundant architectures

Message passing process communication

Well suited for maintaining data integrity in a transactional 
type of system

Can be used to replicate a critical system function or user 
application

Assumptions
Hardware and software modules design to fail-fast, i.e., to 
rapidly detect errors and subsequently terminate processing

Errors can be corrected by re-executing the same software 
copy in changed environment

20(c) 2017, Mehdi Tahoori



Reliable Computing I – Lecture 12

KIT – University of the State of Baden-Wuerttemberg and 
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 12

Process Pairs - Overview 

The user application is replicated on two processors 
as primary and backup processes, i.e., as process 
pairs 
Normally, only the primary process provides service 
The primary sends checkpoints to the backup 
The backup can take over the function when the 
primary fails 
The operating systems halts the processor when it 
detects non-recoverable errors 
The “I am alive” message protocol allows the other 
processors to detect the halt and to take over the 
primaries that were running on the halted processor 

21(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 12

Robust Data Structures 

The goal is to find storage structures that are robust in the 
face of errors and failures 
What do we want to preserve? 

Semantic integrity - the data meaning is not corrupted 
Structural integrity - the correct data representation is preserved 

A robust data structure contains redundant data which 
allow erroneous changes to be detected, and possibly 
corrected 

a change is defined as an elementary (e.g., as single word) 
modification to the encoded (data structure representation on a 
storage medium) form of a data structure instance 
structural redundancy 

a stored count of the numbers of nodes in a structure instance 
identifier fields 
additional pointers 

22(c) 2017, Mehdi Tahoori



Reliable Computing I – Lecture 12

KIT – University of the State of Baden-Wuerttemberg and 
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 12

Link Lists 

Non-robust data structure 
in each node store a pointer to the next node of the list 

place a null pointer in the last node 

23(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 12

Linked Lists

Single-Linked List Implementation 
Additions for improving robustness 

an identifier field to each node 
replace the NULL pointer in the last node by a pointer to the 
header of the list 
stores a count of the number of nodes 

24(c) 2017, Mehdi Tahoori



Reliable Computing I – Lecture 12

KIT – University of the State of Baden-Wuerttemberg and 
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 12

Linked Lists

Double-Linked List Implementation 
Additions for improving robustness 

a pointer added to each node, pointing to the predecessor of 
the node on the list 

25(c) 2017, Mehdi Tahoori

Reliable Computing I: Lecture 12

Robust Data Structures 

Commonly used techniques for supporting robust data 
structures 

techniques which preserve structural integrity of data 
binary trees, heaps, fifos, queues, stacks 
linked data structures 

content-based techniques 
checksums, encoding 

Limitations 
not transparent to the application 
best in tolerating errors which corrupt the structure of the data (not the 
semantic) 
increased complexity of the update routines may make them error 
prone 
erroneous changes to the data structure may be propagated by 
correct update routines 
faulty update routines may provoke correlated erroneous changes to 
several fields 

26(c) 2017, Mehdi Tahoori


