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Today’s Lecture 

Backward error recovery 

Checkpointing and Recovery 

BER in uni-processor system  

BER in multi-processor systems 
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Recovery - Basic Concepts  

Providing fault tolerance involves three phases  
Error detection  

Assessment of the extent of the damage  

Error recovery to eliminate errors and restart afresh  

Forward error recovery - the continuation of the 
currently execute process from some further point with 
compensation for the corrupted and missed data. The 
assumptions:  

The precise error conditions that caused the detection and 
the resulting damage can be accurately assessed  

The errors in the process (system) state can be removed  

The process (system) can move forward  

Example: exception handling and recovery  
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Recovery - Basic Concepts  

Backward error recovery - the current process is 

rolled back to a certain, error-free, point and re-

executes the corrupted part of the process thus 

continuing the same requested service. The 

assumptions:  

The nature of faults cannot be foreseen and errors in 

the process (system) state cannot be removed without 

re-executing  

The process (system) state can be restored to a 

previous error-free state of the process (system)  
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FER vs BER 
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Backward Error Recovery (BER) 

If error detected, recover backwards & re-execute 
Recover to previous state of system that we know is error-
free 

Assumes that error will be gone before resuming execution 

Some terminology: 
Checkpointing: periodically saving state of system 

Logging: saving changes made to system state 

Recovery point: the point to which we recover in case of 
error 

Many commercial machines use(d) BER 
Sequoia, Synapse N+1, Tandem/HP NonStop 

BER also includes all-software schemes 
Nightly backups of file systems, database software, etc. 
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Checkpoint and Rollback  

Applicability  

When time redundancy is allowed  

To transient hardware and many software design faults (e.g., timing 
faults)  

To both nonredundant and redundant architectures  

When it is feasible to determine checkpoints in an application  

Checkpointing  

Maintains/saves precise system state or a “snapshot” at regular 
intervals  

Snapshot can be as small as one instruction  

Typically, checkpoint interval includes many instructions  

May not be ideal when there is much error detection latency  

Rollback recovery  

When error is detected  

Roll back (or restore) process(es) to the saved state, i.e., a checkpoint  

Restart the computation  
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BER Abstraction 
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BER Performance 

May sacrifice performance to achieve availability 

Where might we lose performance? 

May not be suitable for real-time systems 

What are the alternatives? 
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Checkpoint and Rollback: What do we need?  

Implement an appropriate error-detection 

mechanism  

Internal to the application: various self-checking 

mechanisms  

data integrity,  

control-flow checking,  

acceptance tests 

External to the application  

signals (e.g., abnormal termination),  

missing heartbeats,  

watchdog timers  
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6 BER Issues 

1) What state needs to be saved? 

2) How do we save this state? 

3) Where do we save it? 

4) How often do we save it? 

5) How do we recover the system to this state? 

6) How do we resume execution after recovery? 
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(1) What State To Save 

Need to save all state that would be necessary if this were 
to become the recovery point 

Process state  
Volatile states  

Program stack (local variables, return pointers of function calls)  

Program counter, stack pointer, open file descriptors, signal handlers  

Static and dynamic data segments  

Persistent states  

User files related to the current program execution (whether to include the 
persistent state in the process state depends on the application, e.g., the 
persistent state is often an important part of a long-running application)  

In general, we only need to save the user-visible state 

For example, microprocessors: 
Must save architectural state 

Don’t have to worry about micro-architectural state 
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(2) How to Save State 

Two “flavors” of BER: 

Checkpointing: Periodically stop system and save state 

Logging: Log all changes to state 

Checkpointing 

Only incurs performance overhead at periodic checkpoints 

Can only recover at coarse granularity 

Size of checkpoint is often fixed 

Logging 

Finer granularity of rollback 

Incurs overhead for logging many common operations 

Amount of state logged is variable (but may have upper bound) 

Hybrid approaches are also used 

Why might these be useful? 
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(3) Where to Save State 

Have to save state where it is “safe” 
A fault in the recovery point state could make recovery 
impossible 

In processor (can’t survive loss of processor chip) 
Processor saves registers to shadow registers 

In cache (same as processor, if on-chip cache) 
Processor copies registers into cache 

In memory (memory can be made pretty safe) 
Processor copies registers into memory 

Write-through cache copies data into memory 

In disk (arguably the safest, but slow) 
E.g., databases log updates to disks 

In tape (too slow except for rare backups) 
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(4) When to Save State 

Checkpointing 
Can choose checkpoint interval 

Determine checkpoint times based on  

Elapsed time  

Message received or sent, e.g., parallel or distributed applications  

Amount of dirtied state, e.g., database applications  

Critical function invocation/exit  

Logging 
Continuously saving state (every time it changes) 

For checkpointing, a larger checkpoint interval means 
Less overhead due to checkpointing (since less frequent) 

Coarser checkpoint granularity (can’t recover to arbitrary 
point) 
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(5) How to Recover State 

Checkpointing:  

Copy pre-fault recovery point checkpoint into architectural state 

Logging:  

Unroll log to undo changes since recovery point 

 

 

 

Tradeoff between these two depends on system 
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(6) How to Resume Execution 

Simply resuming execution after recovery may not 

be feasible 

E.g., recovery due to hard fault in interconnection 

switch 

May need to reconfigure before resuming, to 

ensure forward progress 

E.g., reconfiguring the routing in interconnect to avoid 

dead switch 

What if you can’t resume? Does BER still provide 

any benefits (in any metric)? 

17 (c) 2017, Mehdi Tahoori 



Reliable Computing I: Lecture 11 

Uniprocessor BER: What State To Save 

Assume disks are safe storage  

(common assumption) 

Checkpoint state = architectural state 

Architectural registers (including program counter, etc.) 

NOT micro-architectural state (e.g., branch predictor 

state) 

Why not? 

Memory (and caches) 
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Uniprocessor BER: How/Where To Save State 

Architectural registers 

Copy them to shadow registers within processor 

Or map them to memory and thus save them in cache 
(or memory) 

Modified blocks in cache 

Use write-through cache to copy cache state to memory 

Or periodically flush all modified blocks to memory 

Why don’t we save unmodified blocks in cache? 

Dirty pages in memory 

Periodically flush all dirty pages to disk 

Why don’t we save clean pages? 
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Uniprocessor BER: When To Save State 

If we save after every instruction 
Almost has to be done with logging (rather than 
checkpointing) 

Enables finest granularity of recovery (but is this overkill?) 

In OOO processor, must save precise state of system 

Potentially high overhead 

Logging takes time (but is it on critical path?) 

Extra power consumption 

If we save after every N instructions (N >> 1) 
Coarser granularity  recovery is likely to have to go back 
farther in time and potentially undo more error-free work 

But if errors are rare, this penalty won’t matter much 

Overhead might be reduced by checkpointing (instead of 
logging) 
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Uniprocessor BER: How To Recover State 

Not possible if fault is in recovery point state! 

 

Architectural registers 

Copy them back from shadow registers 

Load them back from where they were mapped in memory 

Cache 

Don’t have to do anything – state is already saved on 
memory/disk 

Will get re-loaded with state after resuming execution 

Memory 

Don’t have to do anything – state is already saved on disk 

Will get re-loaded with state after resuming execution 
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Uniprocessor BER: How To Resume 

Execution 

May not be possible if fault can’t be tolerated 

(even if we were able to recover from it) 

E.g., hard fault in instruction fetch unit 

Other examples? 

For transient errors, nothing needs to be done 

before resuming execution 
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Recovery in Distributed/Networked Systems  

Processes cooperate by exchanging information to 
accomplish a task  

Message passing (distributed systems)  

Shared memory (e.g., multiprocessor systems)  

Rollback of one process may require that other 
processes also roll back to an earlier state.  

All cooperating processes need to establish recovery 
points.  

Rolling back processes in concurrent systems is more 
difficult than for a single process due to  

Domino effect  

Lost messages  

Livelocks  
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Recovery in Distributed/Networked Systems  

Two types of systems 

Shared memory 

Processors communicate via global shared memory 

Loads and stores to shared memory used to transfer data 

Message passing 

Processors communicate via explicit messages 

Goal: create consistent checkpoints (via checkpointing 

or logging) 

Consistent checkpoint = set of per-processor checkpoints 

that, in aggregate, constitutes a consistent system state 

Recovery line = set of recovery points = consistent 

checkpoint 
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Shared Memory BER 

Must save uniprocessor state for all processors in 

the system 

Must also save state that corresponds to 

communication between the processors 

Cache and memory state 

Includes cache coherence state 
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Massage Passing BER 

What state to save? 

Uniprocessor state at each processor in system 

Messages received 

From other processes 

From outside world (e.g., Internet) 

State depends on whether communication is reliable or lossy 

In a consistent checkpoint, it shouldn’t be possible for 

process P1 to have received message M from process P2 if 

P2’s checkpoint doesn’t yet include having sent M 

26 (c) 2017, Mehdi Tahoori 



Reliable Computing I: Lecture 11 

Local State 

For a site (computer, process) Si, its local state LSi, at a 
given time is defined by the local context of the distributed 
application 

send(mij) - send event of a message mij by Si to Sj 

rec(mij) - receive event of message mij by site Sj 

time(x) - time in which state x was recorded 

We say that 
send(mij)  LSi iff time(send(mij)) < time(LSi) 

rec(mij)  LSj iff time(rec(mij)) < time(LSj) 

Two sets of messages are defined for sites Si and Sj 
Transit 

transit(LSi, LSj) = {mij | send(mij)  LSi  rec(mij)  LSj} 

Inconsistent 

inconsistent (LSi, LSj) = {mij | send(mij)  LSi  rec(mij)  LSj} 
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Global State 

A global state (GS) of a system is a collection of the 
local states of its sites, i.e., GS = {LS1, LS2, …, LSn}, 
where n is the number of sites in the system.  

Consistent global state:  

A global state GS is consistent iff  for every received 
message a corresponding send event is recorded in the 
global state 

Transitless global state:  

A global state GS transitless iff All communication channels 
are empty 

Strongly consistent global state:  

A global state that is both consistent and transitless  
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Local/Global State - Examples 

The global states:  

GS1 = {LS11, LS21, LS31} is a strongly consistent global state.  

GS2 = {LS12, LS23, LS33} is a consistent global state .  

GS3 = {LS11, LS22, LS32} is an inconsistent global state.  
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Uncoordinated Checkpointing 

Each process independently takes checkpoint 

Doesn’t coordinate with other processes 

Pros 

Easier to implement 

No performance penalty for coordination 

Cons 

May be tougher to recover 

Tough/impossible to create consistent recovery line 

Might end up with some inconsistent checkpoints 

Could lead to cascading rollbacks (aka “domino effect”) 

30 (c) 2017, Mehdi Tahoori 



Reliable Computing I: Lecture 11 

The Domino Effect 

If the most recent checkpoint is inconsistent (i.e., 
includes a message reception but not its sending), 
then system must recover to earlier checkpoint 

But what if that one is also inconsistent? 

And then the one before that one? 

In worst case, we would have to undo all work and 
recover to the beginning of execution 
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Domino Effect: Example 

Rollback of X does not affect other processes.  

Rollback of Z requires all three processes to roll back 
to their very first recovery points.  
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Lost Massages 

Message loss due to rollback recovery 

33 (c) 2017, Mehdi Tahoori 



Reliable Computing I: Lecture 11 

Livelock 

Livelock is a situation in which a single failure can 
cause an infinite number of rollbacks, preventing 
the system from making progress 
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Recovery Line 

A strongly consistent set of checkpoints (recovery line) corresponds to 
a strongly consistent global state. 

there is one recovery point for each process in the set during the interval 
spanned by checkpoints, there is no information flow between any 

pair of processes in the set 

a process in the set and any process outside the set 

A consistent set of checkpoints corresponds to a consistent global 
state. 

Set {x1, y1, z1} is a strongly consistent set of checkpoints 

Set {x2, y2, z2} is a consistent set of checkpoints (need to handle lost 
messages) 
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Coordinated Checkpointing 

To avoid cascading rollbacks, the processes can 

coordinate when they take their individual 

checkpoints 

Pros (besides no domino effect!) 

Easier/faster recovery 

Can be more aggressive in garbage collection 

Cons 

More complex to implement 

Coordination incurs a performance penalty 
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Blocking 4-phase Coordination 

Algorithm for creating consistent checkpoint 

1) Centralized coordinator broadcasts TakeCheckpoint 

request to all processes to take checkpoint 

2) Each process then takes a checkpoint and sends 

acknowledgment to coordinator that it has completed 

3) Centralized controller waits for all acks and then 

broadcasts CheckpointDone message 

4) Each process resumes execution 
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More Optimized Coordination 

4-phase algorithm is slow because it is blocking 

Some non-blocking algorithms are faster, but 
more complex 

Another alternative is to use synchronized clocks 
to facilitate coordination 

Each process takes checkpoint every N clock cycles 

If clocks are perfectly synchronized, this works, but 
that’s tough to do 

Better yet, as long as clock skew is less than the 
minimum communication latency between any two 
processes, then this works  

because a message can’t go backwards in time 
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Logical Time Coordination 

Logical time clocks have been used to coordinate 
checkpoints 

Each node has its own logical clock 

Each node takes “independent” checkpoint every N logical cycles 

Logical time is a time basis that respects causality 
If event A causes event B, then A must happen earlier in logical 
time than B 

E.g., sending of a message happens earlier than reception 

Many logical time bases/algorithms exist 
Loosely synchronized physical clocks (skew < min latency) 

Token-passing among processes to advance logical time 

Advantage of logical time coordination is that it is implicit 
and non-blocking 

Don’t have to stop to coordinate --- just look at local logical clock 
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I/O and the Outside World 

Output commit problem – Can’t send uncommitted 
data beyond sphere of recoverability 

E.g., can’t tell printer to write check for $1M before we know 
that’s the right amount 

Standard solution: wait to communicate with I/O 

Only send validated data to outside world 

Problem: if it takes a long time for P1 to know that its most 
recent checkpoint is part of a validated recovery line, then 
output will be delayed a long time 

but we can avoid this by using logging! 

Input commit problem – Input can’t be recovered 

Solution: augment checkpointing with input logging 
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Message Passing BER: Logging 

Goals of logging 

Speed up output commit by removing dependencies 

between checkpoints 

Solve the input commit problem 

Different types of logging schemes 

Pessimistic 

Optimistic 
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Pessimistic Logging 

Log every message reception before processing it 
(and integrating its effects into execution) 

If P1 detects error, P1 recovers to its most recent 
checkpoint and replays messages log (only those 
messages that arrived after checkpoint taken) 

KEY: No need to recover any other process! 

Since there are no longer any dependencies between 
checkpoints on different processes, output commit 
doesn’t require waiting to establish consistent 
recovery line 

Disadvantages: 
Logging is on critical path (degrades performance) 

Logs may take up lots of storage space 
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Optimistic Logging 

Take message logging off the critical path 

Let received messages affect the execution while they 

are being logged in parallel 

Assumes that it is very rare for an error to occur 

between when message arrives and when it has been 

logged 

“Window of vulnerability” 

Tradeoff: better performance vs. not as reliable 
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