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Today’s Lecture 

Concurrent error detection 

Watchdog timers 

Watchdog processor  

Heartbeats  

Consistency and capability checking  

Data audits  

Runtime generated assertions  
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Concurrent Error Detection (CED) 

Employed during normal operation 

Detect errors as they occur 

Data integrity ensured 

Correct outputs or 

Error indicated for incorrect outputs 

Fault-secure property 
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General CED Structure 

Function f 

Output 

Characteristic 

Predictor 

Input 

Output 

Checker 

Error 
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Output “Characteristics” 

Output itself 

Duplication 

Output parity 

Parity prediction 

Residue 

Residue codes 

1s or 0s count in output word 

Many others 

All output characteristics are not equally effective 
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CED Classification & Examples 

Hardware Software 

Application 
independent 

Identical Duplication 
Diverse Duplication 

Parity Prediction 
Residue codes     
Multi-threading       

Watchdog processor 

Duplicated instruction 
Identical or Diverse Data 

Control-flow checking       
N-version programs 

Application 
specific 

Compression, 
Encryption,          

Signal processing, 
RESO, … 

Assertion checks 
Algorithm-based fault-

tolerance 
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Duplication for CED 

Two implementations: Identical or diverse 

Widely used (aka duplex system) 

e.g., IBM G5, G6 processors, shuttle 

Issues 

Common-mode failures, synchronization 
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Fault Effects in Duplex Systems 

Single module failure 

Guaranteed data integrity 

Multiple independent failures 

Data integrity not guaranteed 

Both modules generating identical errors 

Very low probability 

Common-mode failures 

Data integrity not guaranteed 

More frequent 
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Common-Mode Failures (CMFs) 

Multiple faults 

Single cause 

More probable than multiple independent failures 

Examples 

Power-supply dip,  

Single source radiation causing multiple upsets, 

Design faults 

Antidote for CMF 

Design Diversity 

Diverse implementations 

Error effects caused by CMFs are different 
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Watchdog Timer  

An inexpensive method of error detection  

Process being watched must reset the timer 

before the timer expires,  

otherwise the watched process is assumed as faulty  

Watchdog timers only detect errors which manifest 

themselves as a control-flow error such that the 

system does not continue to reset the timer  

Only processes with relatively deterministic 

runtimes can be checked, since the error detection 

is based entirely on the time between timer resets  
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Watchdog Timer  

A watchdog timer provides only an indication of 

possible process failure  

a partially failed process may still be able to reset the timer  

Coverage is limited, as neither the data nor the results 

are checked  

When used to reset the system, a watchdog timer can 

improve availability (the mean time to recovery is 

shortened) but not reliability (failures are just as likely 

to occur)  

when the availability of a system is more important than the 

loss of data, the use of a watchdog timer to reset the system 

on the detection of an error is an appropriate choice.  
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Example Applications of Watchdog Timers  

NASA’s Mars Pathfinder mission  

mars rover uses a real-time preemptive multithreaded operating 
system  

tasks scheduled based on priorities that reflect their relative urgency  

Major failure event: priority inversion between tasks with 
different priorities  

system deadlock  

Watchdog timer used to detect such scenario and restart the 
system  

full restart causes loss of data  

repetitive resets seriously limit the correct work of the system  

the problem eventually diagnosed as a software bug  

software patch reestablishes proper behavior  

A traditional system reset is a drastic but robust measure 
used in engineering practice  

availability of the system is more important than the lost data due 
to the system reset  
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Example Applications of Watchdog Timers  

Telephone Switch System  

External watchdog timers monitor correct program 

operation by triggering recovery when timers are not 

periodically reset  

Allows an early (before the error propagates) detection 

of problems caused by software errors and 

consequently easier recovery  
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Watchdog Processor & Control Flow 

Checking 

Watchdog processor: “Simple” processor 

Generalized version of watchdog timer 

Program control flow checked 

Assertion checks for computation errors 

Can be integrated into the processor itself 
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Structural Integrity Checking (SIC) 

Program broken into basic blocks 

Branch-free sequence of instructions 

Unique signature for each basic block 

Signatures explicitly transferred to watchdog 

Signature sequence checked by watchdog 

Automated at compiler level 

Assignment of signatures  

Instructions to send signatures to the watchdog.  

Watchdog program can be automatically synthesized.  
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Structural Integrity Check Example 
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i<10 

Block 2 

Block 1 

J > 5 

Block 4 

Block 3 

Block 1 signature 

to watch-dog 

Block 2 signature 

Block 4 signature 

Block 3 signature 
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EDDI 

Error Detection by Duplicated Instructions 

Intended for transient computation errors 

Duplicated Instructions 

 Master and shadow instructions 

Master and shadow results compared 

Transient errors in computations detected 

Automated flow 

Performance overhead: 13%-111% 

Super-scalar processors advantageous 

No dependency between master & shadow 
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EDDI Example 
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ADD R3, R1, R2   ; R3  R1 + R2 

MUL R4, R3, R5   ; R4  R3 * R5 

ST  0(SP), R4   ; store R4 in location  

       pointed by SP 

ADD R3, R1, R2   ; R3  R1 + R2 master 

ADD R23, R21, R22  ; R23  R21 + R22 shadow 

MUL R4, R3, R5   ; R4  R3 * R5 master 

MUL R24, R23, R25   ; R24  R23 * R25 shadow 

BNE R4, R24, ErrorHandler ; compare master and  

       shadow results 

ST  0(SP), R4   ; store master result 

ST  offset(SP), R24   ; store shadow result 
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Heartbeats  

A common approach to detecting process and 

node failures in a distributed (networked) 

computing environment.  

Periodically, a monitoring entity sends a message 

(a heartbeat) to a monitored node or process and 

waits for a reply.  

If the monitored node does not respond within a 

predefined timeout interval, the node is declared 

as failed and appropriate recovery action is 

initiated.  
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Heartbeats: Issues 

The timeout period is pre-negotiated by the two 
parties or sometimes even hard-coded by the 
programmer  

The predefined timeout value cannot adapt to 
changes in network traffic or to load variability on 
individual nodes  

The monitored node is assumed to be healthy if it 
is able to respond to a heartbeat message  

Process/thread responding to the heartbeat 
message may operate correctly, while other 
processes/threads may be in a deadlock situation 
or operating incorrectly  
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Adaptive & Smart Heartbeat  
Adaptive heartbeat  

the timeout value used by the monitor process is not fixed but is periodically 
negotiated between the two parties to adapt to changes in the network traffic 
or node load.  

Smart heartbeat  

the entity being monitored excites a set of predefined checks to verify the 
robustness of the entire process and only then responds to the monitoring 
process  
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Capability Checking  
can be implemented as a 
hardware mechanism or can 
be part of the operating 
system (usually the case)  

access to objects (memory 
segments, I/O devices) is 
limited to users (processors 
or processes) with the proper 
authorization  

Examples:  
virtual address management 
(MMU usually has a 
capability check)  

permission vs. activity; if 
these are not valid, there is 
an error trap  

password checking  

Consistency Checks  
range check - confirms 
that a computed value is 
in a valid range, e.g., a 
computed probability must 
be in the range 0 to 1  

address checking - verifies 
that the address to 
accessed exists  

opcode checking - checks 
whether the instruction to 
be executed has one of 
defined (documented) 
opcodes  

arithmetic overflow and 
underflow  

Consistency and Capability Checking  
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Data Audits  

Widely used in the telecommunications industry  

A broad range of custom and ad hoc application-level 
techniques for detecting and recovering from errors in a 
switching environment (in particular in a database).  

Data-specific techniques deeply embedded in the 
application can provide significant improvement in 
availability  

Static and Dynamic Data Check  
A corruption in static data region detected by computing a golden 
checksum of all static data at startup and comparing it with a 
periodically computed checksum (e.g., Cyclic Redundancy Code)  

For dynamic data, the range of allowable values for database fields 
are often stored in the database system catalog. This information is 
used to perform a range check on the dynamic fields in the 
database.  
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Data Audits: Structural Checks  

The structure of the database is established by 

header fields that precede the data portion in 

every record of each table.  

Structural audit calculates the offset of each 

record header from the beginning of the database 

based on record sizes stored in system tables (all 

record sizes are fixed and known).  

The database structure (in particular, the 

alignment of each record and table within the 

database) is checked by comparing all header 

fields at computed offsets with expected values.  
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Data Audits 

Semantic Referential Integrity Check 

Traces logical relationships among records in different 

tables to verify the consistency of the logical loops 

formed by the record(s)  

Detects resource leaks  

Corruption of key attributes in a database leads to lost 

records, i.e., records participating in semantic 

relationships disappear without being properly updated  
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Runtime Generated Assertions 

Goals  
Generate runtime assertions by monitoring the values of selected 
variables in a program  

Use the monitored data to abstract out, via statistical pattern 
recognition techniques, the key relationships between the 
variables, separately and jointly, and to establish their probabilistic 
behavior  

Approach  
Identify clusters of values traversed by different variables  

Use this information to automatically generate runtime assertions 
capable of capturing abnormal behavior of an application due to 
hardware or software errors  

Cross-check with other entities in the system their views on the 
state of selected variables  

if a variable is globally accessible, then multiple entities (e.g., multiple 
execution threads) may have their own opinions about the correct value of 
the variable  

can improve coverage and reduce false alarms  
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Control-flow Monitoring Using Signatures 

Hardware Approaches  

Employ a Watchdog (a simple co-processor) to monitor 
behavior of a Main Processor  

Suitable for a single embedded applications with little or no 
caching  

Limited applicability in off-the-shelf systems, as require 
additional specialized resources, e.g., watchdog, pre-
compiler.  

27 (c) 2017, Mehdi Tahoori 



Reliable Computing I: Lecture 9 

Control-flow Monitoring Using Signatures 

Hardware Approaches  

Embedded Signature Monitoring  

Pre-computed signature embedded in the application program  

Recompilation of existing programs  

Performance degradation of application  

Autonomous Signature Monitoring  

Watchdog Processor stores pre-computed signature in the 

memory and mimics the control flow of application  

Watchdog Processor rather complex  

High memory overhead  
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Control-flow Monitoring Using Signatures  

Software Approaches  

Software techniques partition the application into 

blocks, either in the assembly language or in the high-

level language  

Appropriate instrumentation inserted at the beginning 

and/or end of the blocks  

The checking code is inserted in the instruction stream 

eliminating the need for a hardware watchdog 

processor  

Two classes of approaches  

non-preemptive signature checking  

preemptive signature checking  
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Problems with Control Flow Signatures  
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Preemptive Control Signatures (PECOS)  

PECOS determines the runtime target address and compares 
that against the valid addresses before the jump to the target 
address is made  

executing instructions from an invalid target location is unlikely  

High-level control structure of Assertion Block  

1.Determine the runtime target address [= Xout].  

2.Extract the list of valid target addresses [= {X1,X2}].  

3.Calculate ID := Xout * 1/P,  

where, P = ![(Xout-X1) * (Xout-X2)]  

Calculation of ID to raise a DIV-BY-ZERO exception in case of 
error  

Can handle single (jumps) or multiple (branches, calls, and 
returns) target addresses  

Assertion Block does not introduce any new control flow 
instruction  
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PECOS 

What Can We Cover with Preemptive Software Control 
Signature? 

 

 

 

 

 

 

 

 

 

 
Solution: Insert programmable error detection core into the CPU   
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