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Code, codeword, binary code

Error detecting and correcting codes

Hamming distance and codes

Parity prediction
Odd/even parity

Basic parity approaches
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Error Detection through Encoding

At logic level, codes provide means of masking or 
detecting errors
Formally, code is a subset S of universe U of possible 
vectors
A noncode word is a vector in set U-S
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Basic Idea

Start with k-bit data word

Add r check bits

Total = n-bit codeword (n=k+r)

Map 2k data words to 2n sized codeword space

Overhead = r/n (sometimes computed as r/k)
E.g., for (single-bit) parity, the overhead is 1/n
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Basic Concepts

Code, codeword, encoding, decoding error 
detection code, error correcting code

Hamming distance properties:
The Hamming weight of a vector x (e.g., codeword), 
w(x), is number of nonzero elements of x.

Hamming distance between two vectors x and y, d(x,y) 
is number of bits in which they differ.

Distance of a code is a minimum of Hamming distances 
between all pairs of code words.

Example: x = (1011), y = (0110)

w(x) = 3, w(y) = 2, d(x, y) = 3
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Hamming Distance

Hamming distance (HD): number of bits in which 
two words differ from each other

E.g., 0010 and 1110 have a Hamming distance of ??

For a group of codewords, the minimum HD 
between any two codewords determines the 
code’s ability to detect and/or correct errors

This is a fundamental rule, not just some ad-hoc 
reasoning
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Hamming Distance Visual: HD=2
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Hamming Distance Visual: HD=3
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Hamming Distance and Error Detection

Can detect up to t-bit errors if HD >= t + 1

9(c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 6

Hamming Distance and Error Detection

Can detect up to t-bit errors if HD >= t + 1
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Hamming Distance and Error Correction

Can correct up to t-bit errors if HD >= 2t+1
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Hamming Distance and Error Correction

Can correct up to t-bit errors if HD >= 2t+1
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Summary: Hamming Distance Properties 

To detect all error patterns of Hamming distance ≤ d, 

code distance must be ≥ d+1
e.g., code with distance 2 can detect patterns with distance 1 (i.e., 
single bit errors)

To correct all error patterns of Hamming distance ≤ c, 

code distance must be ≥ 2c + 1

To correct all patterns of Hamming distance c and detect 
up to d additional errors , 

code distance must be ≥ 2c + d + 1
e.g., code with distance 3 can detect and correct all single-bit 
errors
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Single-bit Parity

Simplest error detection code
Adds one bit of redundancy to each data word

Even (odd) parity: add bit such that total number of 
ones in codeword is even (odd)

E.g., 001010 gets a parity bit of 0 for even parity (1 for odd)

Can detect all single-bit errors
Hamming distance ≥ 2

Could be greater than 2 if data words don’t use all bit 
combinations

Drawbacks:
Can’t detect anything except single-bit errors

14(c) 2016, Mehdi Tahoori



Reliable Computing I – Lecture 6

KIT – University of the State of Baden-Wuerttemberg and 
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 6

Parity Codes - Example
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XOR Tree for Parity Generation
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Codes for RAMs
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Parity Codes for Memory - Comparison
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Parity Prediction in Arithmetic Circuits

Binary Adder
Two inputs: a = (an-1 … a0 ac) and b = (bn-1 … b0 bc)

Two operands to be added: (an-1 … a0) and (bn-1 … b0)

ac and bc are check bits of a and b respectively

Encoded output will be s = (sn-1 … s0 sc) where 

(sn-1 … s0) are determined by the ordinary binary 

addition of (an-1 … a0) to (bn-1 … b0)

and sc is the check bit for (sn-1 … s0)

Then 

Reduces to   
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Parity Prediction in Binary Adder
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Parity-Checked Binary Adder
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Binary Multiplier

Therefore, denoting the check bit for (p7 …p0 ) by pc
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Multiplier Using Array of Full-Half Adders
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Parity Checked Multiplier
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Overlapping Parity (for single-bit errors)

Parity groups are formed with each bit appearing in more than one 
parity group
Errors can be detected and located
Erroneous bit can be corrected by a simple complementation

25(c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 6

Error Correction with Overlapped Parity
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Generalized Overlapping Parity Codes

The previous slide showed how to use overlapping 
parity to detect and diagnose single-bit errors

For single-bit errors, there are k+r possible errors
Therefore, we need 2r ≥ k + r + 1 to uniquely diagnose 
errors

In general, can extend this scheme to detect and 
diagnose more than single-bit errors

General approach called “Hamming Codes”
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Hamming Error-Correcting Code

Require from 10% to 40% redundancy
Best thought of as overlapping parity
The Hamming single-error correcting code uses c parity 
check bits to protect k bits of information:

2c ≥ c + k + 1

Example:
suppose four information bits (d3, d2, d1, d0) and as a result three 
parity bits (p1, p2, p3)
the bits are partitioned into groups as (d3, d1, d0, p1), (d3, d2, d0, 
p2) and (d3, d2, d1, p3)

the grouping of bits can be determine from a list of binary numbers from 0 
to 2k - 1.

each check bit is specified to set the parity, either even or odd, of 
its respective group

28(c) 2016, Mehdi Tahoori



Reliable Computing I – Lecture 6

KIT – University of the State of Baden-Wuerttemberg and 
National Laboratory of the Helmholtz Association

Reliable Computing I: Lecture 6

Hamming Error-Correcting Code

Observe that each group of bits for parity checking 
starts with a number that is a power of 2, e.g., 1, 2, 4. 
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(7,4) Hamming Code

Class of (n,k) Hamming codes, e.g., (7,4) [r= n-k =3]
Let i1, i2, i3, i4 be the information bits
Let p1, p2, p4 be the check bits
p1 = i1 xor i2 xor i4
p2 = i1 xor i3 xor i4
p4 = i2 xor i3 xor i4
Let H be the Parity Check Matrix
If C is a codeword, then H C = 0 (mult modulo 2!)
Else, H C = S, where S is the syndrome

Syndrome identifies where error occurred (i.e., which bit)

This works out like magic because of some cute math
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(7,4) Hamming Code

H =

Info word: 0101: p1 = 0, p2 = 1, p4 = 0
codeword is 0100101

Example1: 
received error-free codeword R = 0100101
Compute syndrome: S = H R = 0 = [0 0 0]

Example 2: 
received R =0110101 (i.e., error in bit position 3)
Compute syndrome: S = H R = [1 1 0]

Read backwards this is 011 = 3

31(c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 6

Check Bits and Syndromes for Single-Bit Errors 

The original data is encoded by generating a set Cg, of parity 
bits. 
To check correctness, the encoding process is repeated and a 
set Cc, of parity bits is generated. 
If Cg and Cc agree, the information is correct. 
If Cg and Cc disagree, the information is incorrect and must be 
corrected. 
To aid the correction, a syndrome is defined: 

The syndrome is a binary word that has 1 in each bit position in which 
Cg and Cc disagree; the syndrome points directly to the erroneous bit. 
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Hamming Single-Error Correction Unit
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Single Error Correction and Double Error 
Detection Hamming Code (SEC-DED)
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Single Error Correction and Double Error 
Detection Hamming Code (SEC-DED) Example
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