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Today’s Lecture ﬂ(“,:

B Reliability evaluation
® Permanent and temporary failures
® Combinatorial modeling
B Series
Parallel
Series-parallel
Non-series-parallel
k-out-of-n
TMR vs. Simplex
Effects of voter, coverage
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Evaluation Criteria -\l‘(“

® A method of evaluation is required in order to compare
the redundancy techniques and make subsequent
design tradeoffs

® Modeling techniques are very vital means for obtaining
reasonable predictions for system reliability and
availability
® Combinatorial: series/parallel, K-of-N, nonseries/nonparallel
® Markov: time invariant, discrete time, continuous time, hybrid
® Queuing

® Using these techniques probabilistic models of
systems can be created and used to evaluate system
reliability and/or availability
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Basic Reliability Measures -\X‘(IT

@ Reliability: durational (default)

B R(t)=P{correct operation in duration (0,t)}
® Availability: instantaneous

B A(t)= P{correct operation at instant t)}

B Applied in presence of temporary failures

B A steady-state value is the expected value over a range
of time.

® Transaction Reliability: single transaction
® R=P{a transaction is performed correctly}
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Mean time to ... ‘\-\-‘(IT

® Mean Time to Failure (MTTF):
B expected time the unit will work without a failure.
® Mean time between failures (MTBF):

B expected time between two successive failures.
® Applicable when faults are temporary.

B The time between two successive failures includes repair time
and then the time to next failure.

® Mean time to repair (MTTR):
B expected time during which the unit is non-operational.
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Failures with Repair -\X‘(IT
B Time between failures: time to repair + time to
next failure
“failure” operational operational
Under repair Under repair
“repair”

® MTBF = MTTF + MTTR
® MTBF, MTTF are same same when MTTR = 0
W Steady state availability = MTTF / (MTTF+MTTR)
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Mission Time (High-Reliability Systems) -\l‘(“

® Reliability throughout the
mission must remain above
a threshold reliability Ry,.

® Mission time Ty,: defined as
the duration in which
R(t) = Ry, 7
® R,, may be chosen to be s
perhaps 0.95. 0

® Mission time is a strict time
measure, used only for very
high reliability missions.

R(t)
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Two Basic cases -\A‘(IT

® We next consider two very important basic cases
that serve as the basis for time-dependent
analysis.

1. Single unit subject to permanent failure

® We will assume a constant failure rate to evaluate
reliability and MTTF.

2. Single unit with temporary failures

B System has two states Good and Bad, and transitions
among them are defined by transition rates.

® Both of these are example of Markov processes.
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Single Unit with Permanent Failure -\l‘(“
® Assumption: constant failure-rate A Z(t)=2
® Reliability = R(t) = e At

Good Bad
_(*® _ (P -Atgy 1
® MTTF = [ R(t)dt = [ e *dt = - 0 )
« Ex1:aunithas MTTF
=30,000 hrs. Find failure rate. ! \ \ T
A=1/30,000=3.3x10-5hr | } |
+ Ex 2: Compute mission time Ty R EN
if Ry, =0.95. ! ! '
054 — N L 1 1_ _

R(t)

e =095 Ty=-In(0.95)/ A

I
=0.051/h 0;3-:75 —N 7: B
*  Ex 3: Assume A=3.33x10" and - | |
Ry, =0.95 find Ty | ‘

Ans: Ty = 15388 hrs 0 lj;L 100 150
(compare with MTTF =30,000) time
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Single Unit: Temporary Failures -\A‘(IT

® Temporary: intermittent, transient, permanent with repair

A
bad

good [ 1 i
® po(t) = po(0)e~HHW 4 o (1 — e~ (H1) N2 1

B pi(t) =1—pe(t)

® Availability A(t) = py(t)

® Steady-state availability (t - ) A(t) = ﬁ

® Reliability: R(t) = P{no failure in (0,t)} = e=*

W MTTF =
B Same as permanent failure

First failure

>
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Combinatorial Modeling -\l‘(“

B System is divided into non-overlapping modules

® Each module is assigned either a probability of working, P;, or a
probability as function of time, Ri(t)

® The goal is to derive the probability, P, or function Ry (t) of
correct system operation

® Assumptions:
® module failures are independent

® once a module has failed, it is always assumed to yield incorrect
results

B system is considered failed if it does not satisfy minimal set of
functioning modules

B once system enters a failed state, other failures cannot return system
to functional state

B Models typically enumerate all the states of the system that
meet or exceed the requirements of correctly functioning system
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Combinatorial Reliability -\X‘(IT

® Objective is: Given a

B systems structure in terms of its units

| reliability attributes of the units

® some simplifying assumptions
® We need to evaluate the overall reliability measure.
® There are two extreme cases we will examine first:

B Series configuration

® Parallel configuration

B Other cases involve combinations and other configurations.

® Note that conceptual modeling is applicable to R(t),
A(t), R(t). A system is either good or bad.
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Series configuration -\l‘(“

® Assume system has n components, e.g. CPU,
memory, disk, terminal

® All components should survive for the system to
operate correctly

R; = P{U, good U, good (U, good }

=PU, g}P{U, g}P{U; g}
= RleRs

B Reliability of the system
Rsmﬁ(f) = HRi(f) where R((t) is the reliability of module i
i=l
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Series configuration -\X‘(IT

B For exponential failure rate of each component
If R, ()=

tl]el] RS (f) — I_I()_/uf - ()—I). | FA At

B = ¢ 2ol gt
Where Aspom = ZZ; A; corresponds to the failure rate of
the system
® System failure rate is the sum of individual failure rates:
A=A, +A,++A,
® Mean time to failure: MTTE 1

series 7

e

=1
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“A chain is as strong as it's weakest link”?

B Let us see for a 4-unit series
system ‘
® Assume R,=R, =R;=0.95, B
R,=0.75
® R =0.643
® Thus a chain is slightly
weaker than its weakest link! o -

® The plot gives reliability of a

Reliability
o

system. Each of the 10 units
are identical.

B More units, less reliability
if X, = lifetime of component i then
0 < E[X]=min{E[X,]}
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10-unit system vs a single o %=+ &

Time

15

Parallel Systems

® Assume system with spares
a spare

operate correctly
® Prob. of module i to survive = R,
® Prob. of module i not to survive = (1 - R))
® Prob. of no modules to survive =
B (1-R)(1-Ry)...(1-R,)
® Prob [at least one module survives] =
® 1 - Prob [none module survives]
® Reliability of the parallel system

Rpam[ic.’('r) =1.0- H (l 0- Ri (I))
i=1
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® As soon as fault occurs a faulty component is replaced by

® Only one component needs to survive for the system to
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Parallel Systems

E(X) =f [1-(1-e™")"]dt

[
> | —
~. | =

=3
—_
S i

U
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Parallel Configuration: Example

® Problem: Need system reliability R, =1 — €
® How many parallel units are needed

W IfRy =R, = ..=Ry, Ry <R
® Solution : 1-R, =(1-R,)"
e=(1-R )"
. Ine
In(l-R,)
Assume R, =0.9999 (€=0.0001),
R =09
4
gives X =4,
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Series-Parallel Systems -\l‘(“

® Consider combinations of series and parallel systems

® Example, two CPUs connected to two memories in
different ways

R 4s=1- (1-Ra Rb) (1-Rc Rd)

CPU Memory

[l
Rs_“= (1-(1-Ra)(1-Rc¢)) (1-(1-Rb)(1- Rd)) _

c
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Non-Series-Parallel-Systems -\A‘(IT

® Often a “success” diagram is used to represent the
operational modes of the system

Each path from X to Y represents
a configuration that leaves the system
operational

® Reliability of the system can be derived by expanding

around a single module m
® R,= Ry, P(system works | m works) +
(1-R,,) P(system works | m fails)

® where the notation P(s | m) denotes the conditional
probability “s given m has occurred”
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Non-Series-Parallel-Systems -\l‘(“

B (* short ) works, C (* short ) works

B (“ short ) works, C (* open ) fails

(A }—E]

B (“ open ) fails

Reduced model with B replaced Reduction with B and C replaced

P(system works|B works) =
ReARp[1 - (1 -Ry)(1 -Rp)]}
+(1-Ro)(RsRpR)

Ry = Ry P(system works[B works)
+(1-Rg) {Rp[1 - (1 - RRe)(1 - ReR)]}

Letting R, ...R; =R, yields R =RS_-3R5, +R* +2R3_

SYS
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Non-Series-Parallel-Systems -\l‘(“

® For complex success diagrams, an upper-limit
approximation on R, can be used

® An upper bound on system reliability is:
R, <1-TT(1=R,....) Reanis the serial reliability of path i

® The above equation is an upper bound because the
paths are not independent.

® That is, the failure of a single module affects more than
one path.

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 5
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Non-Series-Parallel-Systems -\l‘(“
® Example

Reliability block diagram (RBD)
of a system

Rm =1~ (l = RARBRC‘RD Xl i RARERD )(1 T RFRCRD )
RS.I'S S ZR:I + R:l - Rli = 2R?Zi + Ri'lilo
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k-out-of-n Systems -\A‘(IT

@ Assumption:

® we have n identical modules with statistically
independent failures.

® k-out-of-n system is operational if
® k of the n modules are good.
iahili i “(n) . .
B System reliability then is R, = Z[ .]P’(l _ oy
i=k
® Where p is the probability that one unit is good

® R, is the summations of the probabilities of all good
combinations

n n! .
o (L) = Tt - choose i good systems out of n
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Triple Modular Redundancy -\l‘(“
W 2-out-of-3 system
2 (3 i 3-i :
RTMR:; C|RA=R) ;
=3R*(1-R)+ R’ 3
=3R* 2R’

® Where R is the reliability of a single module.

® This assumes that the voter is perfect

B areasonable assumption if the voter complexity is much less
than an individual module.
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TMR vs. Simplex -\A‘(IT
B System reliability vs. module reliability

1
..’
2. 075
2 05
> L
0.3 1 o —— k-out-of-n
-~ .- single
0 ; :
0 0.25 0.5 0.75 1
Module Reliability

® What is the conclusion?
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TMR vs. Simplex: MTTF

® Compare reliability of simplex and TMR systems
Rsunplex(r) =€ a

MTTF 10 = I e di=1/1

— —JAT }—_/.i' _ —Al
MTTF = jRTMR (t)dt Rmm(’) =e + (2 J‘ (I-e™)
0
_Tra 24t L34t 3 2 5
= J.(Je 24" )dt MITF,p=————=—
0 24 34 64
MTTFsimplex > MTTPH[R
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TMR vs. Simplex: MTTF -\3‘(“.

Reliabilit
o
o

Simplex

02
0.1
0 . . . ————— . ; -
0 05 1 15 2 25 3 35 a4 45 5
M, lambda * t
Rz (1) = R(1) 0<r=y¢,
R ()= R(1) by S Feton
n2 0.7
wheret, =——~ —
A A
(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 5 28

KIT — University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Reliable Computing | — Lecture 5




SKIT

Karlsruher Institut fur Technologie Reliable Computing | — Lecture 5

TMR vs. Simplex: Mission Time -\l‘(“

® Mission time

R, =3¢ m =27
® A numerical solution for t,, can be obtained
iteratively
® Ex: A=l/year,R, =0.95
MTTF ¢t

single  lyr 0.05
TMR  0.83 0.145

® Thus TMR mission time is much better.
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TMR vs. Simplex: Availability -\A‘(IT

® Temporary faults: steady state

Ex :1:0.0] = A=0.9901
Y7,

= A =001
Ay = 0.9997 = Ayr =0.0003

® Thus TMR can greatly reduce down-time in presence
of temporary faults
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TMR vs. Simplex: Summary -\l‘(“

® Instead of MTTF, look at mission time

B Reliability of K-out-of-N systems very high in the
beginning
® spare components tolerate failures

® Reliability sharply falls down at the end

B system exhausted redundancy, more hardware can
possibly fail

® Such systems useful in aircraft control
® very high reliability, short time
® 0.99999 over 10 hour period
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System with Backup: Effect of Coverage -\X‘(IT

W Failure detection is not perfect
® Reconfiguration may not succeed T Y, ]_'
U

PRI

® Attach a coverage “c¢

R, = P{U, good} +
P{U, hastaken over \U, failed }P{U, failed )
=R +R,C(1-R)

where C = P{failure detected and successful switchover} |

® General case, n-1 spares

n—I1
R,=R,>. C'(1-R,)

i=0
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System with Backup: Effect of Coverage -\l‘(“

W If coverage is 100%, then given low module
reliability, can increase system reliability arbitrarily

® With low coverage, reliability saturates

Rm=0.9 Rm=0.7 Rm=0.5

C=0.99.n=2 0.989 0.908 0.748

C=0.99. n=4 0.999 0.988 0.931

C=0.99. n=mf 0.999 0.996 0.990

C=08_n=2 0.972 0.868 0.700

C=08.n=4 0.978 0.918 0.812

C=0.8, n=mnf 0.978 0.921 0.833
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Effect of Voter XIT
Karsube Institute of Technology

B Previous expression for reliability assumed voter
100% reliable

® Assume voter reliability R,

(5]

R.(1-R,)) 4 \ -
| <0

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 5 34
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TMR+Spares -\l‘(“

® TMR core, n-3 spares (assume same failure rate)

® System failure when all but one modules have failed.
| [f we start with 3 in the core and 2 spares, the sequence is:
| 3+2 > 3+1 —» 3+0 — 2+0 — failure

® Reliability of the system then is
R=R,,[1-nR(1-R)™1-(1-R)"]

® Where R s reliability of a single module and R, is the
reliability of the switching circuit overhead.

| R, should depend on total number of modules n, and
relative complexity of the switching logic.

® Let us assume that R ,=(R?)",
® where a is measure of relative complexity, generally a <<1
® R =Re" [1-nR(1-R)™'-(1-R)"]
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