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Today’s Lecture -\\A(IT

® Forward and backward error recovery

® Hardware redundancy schemes
B Passive
B Active
® Hybrid
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Redundancy AT
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® Hardware redundancy
@ add extra hardware for detection or tolerating faults

® Information redundancy
B extra information, I.e. codes

® Time redundancy
B extra time for performing tasks for fault tolerance

® Software redundancy

@ add extra software for detection and possibly tolerating
faults
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Recovering from Errors -\\-‘(IT

® Two basic approaches
® Forward Error Recovery (FER)
® Backward Error Recovery (BER)

® FER: continue to go forward in presence of errors
® Use redundancy to mask effects of errors

® E.g., have a co-pilot that can seamlessly take over
airplane

® BER: go backward to recover from errors

® Use redundancy to enable recovery to saved good state
of system

® E.g., go back to old saved version of file that you
corrupted
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Forward Error Recovery ﬁ("‘

® Canonical example: triple modular redundancy
(TMR)
® Majority voter chooses correct output
B Masks error in any one of the three modules
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Backward Error Recovery

® Canonical examples
® Periodic checkpoint/recovery
® Logging of changes to system state

® BER designs tend to be more complicated
® Very Rough Comparison: FER vs. BER

Feature

FER

BER

Fault-free

Some

performance degradation

Little
degradation

Performance if | No slowdown

Slow recovery

complexity

faults
Hardware cost |Higher Lower
Design Lower Higher
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Performance of FER vs. BER

performance Warning: do not take this graph too
seriously. The relative heights of the curves
and their shapes are gross estimates that
do not correspond to any particular system.

FER

P
-

BER

fault rate
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System Design Space _\ﬁ(IT

B Systems tend to get only 2 out of 3 features

High Availability

Forward Error
Recovery

Backward Error
Recovery

Low Cost High Performance

Laptops and PCs

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4



Physical (Spatial) Redundancy -\\-‘(IT

® Physically replicate a module
® Most obvious approach

® Design issues

® How many replicas are needed?
W For error detection?
B For error correction?

® How are errors detected/corrected?
® |s the redundancy “active” or “passive”?

® Canonical example: triple modular redundancy (TMR)
® 3replicas

® Errors corrected by majority voter

® Redundancy is passive (no special action taken if error
detected)
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Basic Forms of Hardware Redundancy AT
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® Passive hardware redundancy
® relies on voting to mask the occurrence of errors
® can operate without need for error detection or system reconfiguration
® triple modular redundancy (TMR) , N-modular redundancy (NMR),

® Active hardware redundancy

® achieves fault tolerance by error detection, error location, and error
recovery

® duplication and comparison
® standby sparing

® one module is operational and one or more modules serve as standbys or
spares

® Hybrid hardware redundancy

® Fault masking used to prevent the system from producing erroneous
results

® fault detection, location, and recovery used to reconfigure the system
in the event of an error.

® N-modular redundancy with spares.
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Physical Redundancy: TMR -\\-‘(IT

B Strengths

B Tolerates an error in any single module

® Tolerates soft and hard errors

B Simple design

® Small performance penalty, even when faults occur
® Weaknesses

® Can't tolerate multiple faults
® Can't tolerate any faults after a latent hard fault

Expensive hardware (3x cost)

Uses lots of power (approx 3x power of unprotected)
Also a 3x energy cost

Single point of failure at voter

Can’t tolerate errors due to design faults ... why not?
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TMR with 3 Voters _\ﬁ(l'l'
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® Remove single point of failure e

® Use TMR with 3 voters g
® Restoring organ — )

B Cascade such systems (-

® Multistage TMR with replicate voters
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Physical Redundancy: NMR -\\-‘(IT

® N-modular redundancy (N is an odd integer)
® Whyis N odd?
® Can tolerate more errors than TMR
® Tolerates up to N/2 — % errors
® Cost = N*cost of module
® Cost = {hardware, power, energy}
® Still has single point of failure at voter!
® But voter is simple and can be designed to be very robust

® One solution to single voter problem
® “Restoring organ” = TMR with triplicated voter
® How does this help?
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Physical Redundancy: Boeing 777 IT
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® Boeing 777 requires near-perfect reliability
® |ts main flight computer:
® Has 3 identical units in a TMR configuration

® Each of these units has 3 processors in a TMR configuration

® The three processors in each unit are heterogeneous!

® Intel 80486 (the x86 before the original Pentium)
® Motorola 68040

| AMD 29050

voter voter voter

—

voter
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TMR Iin Complex Networks

Non-redundant network
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Voting in Hardware & Software AT
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® Guarantee majority vote on the input data to the voter

® Ability of detecting own errors (self-checking)

® Determine the faulty replica/node (building the exclusion
logic)

® Voting in networked systems (software)

® requires synchronization of inputs to the voter

® may be difficult to determine voter timeout
W different relative speed of machines
W varying network communication delays

® Voting in hardware systems

® generally does not require an external synchronization of inputs to
the voter

® lock step mode or loosely synchronized mode

® CPUs internally can be out of synch because of non-deterministic
execution of instructions
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Hardware vs. Software Voting schemes -&KIT

______ |Hadwae _____Software

Cost

Flexibility
Synchronization
Performance
Types of voting
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High

Inflexible

Tightly

High (fast)

Majority (others costly)
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Flexible

Loosely

Low (slow)

Different (no extra cost)
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Types of voting -\\-‘(IT

® majority
® in many practical situations it is meaningless
® average

® can have poor performance if a sensor always provide
very low value

® mid value
® a good choice - can be very costly to implement in HW
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Voter Example (Tandem Integrity) -\\-‘(IT

® Voting on CPU initiated operations

® Voter divided into two parts: majority voter and vote analyzer

® the majority voter generates a bit by bit majority vote from the
three inputs to the voter

® the vote analyzer is a three part comparator and determines
whether one of the inputs is faulty

® Voting logic is duplicated and compared
® a failure in the voting logic results in a self-check error
® Voting on external 1/O operations
® distributed, majority voting performed locally on each CPU

External
Interrupt

CPU1 CPU2 CPU3

: lJ.
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Various Hardware Redundancy Schemes
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Active hardware redundancy -\\A(IT

® Key - detect fault, locate, reconfigure

® Duplicate with comparison

® can only detect, but NOT diaghose
W |.e. fault detection, no fault-tolerance

® may order shutdown
® comparator is single point of failure

In - Ml - QOut

M2

@

— Agree

Y
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Active hardware redundancy -\\-‘(IT

® Standby sparing

® One operational unit
B It has its own fault detection mechanism
® On occurrence of fault a second unit (spare) is used
® cold standby - standby is in unknown state
® inactive and must be warmed up
® hot standby - standby is same state as system - quick start
® standby was active and is in correct state
® Can be generalized to n
® One active and n-1 standby spares
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Standby Sparing ﬂ("‘
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More Active Redundancy

® Pair-and-spare
® Combines “duplicate with comparison” with “standby sparing”
® Like standby sparing, except each module is a pair
® This pair compares outputs to detect errors

®  Duplicate units (pair of units) are used to compare and signal an error to the
reconfiguration unit

B Second duplicate (pair, and possibly more in case of pair and k-spare) is used
to take over in case the working duplicate (pair) detects an error

W A pair is always operational

compare
module

QI9

module

compare
module

&9

mocdule
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Hybrid Physical Redundancy ﬁ("

® Combine passive and active redundancy

® Example: NMR with spares
B Let's say we have 5 replicas
® Organize 3 into a TMR scheme
@ Save other 2 for use as spares

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4



Hybrid Physical Redundancy ﬁ("

® Combine passive and active redundancy

® Example: NMR with spares
B Let's say we have 5 replicas
® Organize 3 into a TMR scheme
B Save other 2 for use as spares
B After first hard fault, map in a spare
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Hybrid Physical Redundancy -\\J(IT

® Combine passive and active redundancv
® Example: NMR with spares

Let’'s say we have 5 replicas

Organize 3 into a TMR scheme

Save other 2 for use as spares

After first hard fault, map in a spare

After second hard fault, map in other spare
Even after 2 hard faults, can tolerate a third

Thus, system can tolerate 3 faults that occur
sequentially

Recall that 5SMR can only tolerate 2 faults
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NMR with spares AT
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Hybrid Physical Redundancy ﬁ("

® Self purging redundancy
| initially start with NMR
® all modules are active

® purge one unit at a time till arrive at MR
B exclude modules on error detection
® can tolerate more faults initially compared to NMR with spare

Switch
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Hybrid Physical Redundancy -\\-‘(IT

® Triple-duplex redundancy

combines duplication-with-compare and TMR
redundant self checking

each node is really 2 modules + comparator
self-disable in event of error

Flux summing
® [nherent property of closed loop control system

® If one module becomes faulty, remaining modules compensate
automatically.
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Triple-duplex redundancy
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