AT

Karlsruhe Institute of Technology

Reliable Computing |

Lecture 4: Hardware Redundancy

Instructor: Mehdi Tahoori

INSTITUTE OF COMPUTER ENGINEERING (ITEC) — CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC)

N /7717) v N/ V '
Y/ ey
A .

'’)
/A /} J \ : \‘ \
oy///f \.
| ///_,// .
{ o

.o‘

L)

KIT — University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Today’s Lecture -\\A(IT

® Forward and backward error recovery

® Hardware redundancy schemes
B Passive
B Active
® Hybrid

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

Redundancy AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

® Hardware redundancy
@ add extra hardware for detection or tolerating faults

® Information redundancy
B extra information, I.e. codes

® Time redundancy
B extra time for performing tasks for fault tolerance

® Software redundancy

@ add extra software for detection and possibly tolerating
faults

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

Recovering from Errors -\\-‘(IT

® Two basic approaches
® Forward Error Recovery (FER)
® Backward Error Recovery (BER)

® FER: continue to go forward in presence of errors
® Use redundancy to mask effects of errors

® E.g., have a co-pilot that can seamlessly take over
airplane

® BER: go backward to recover from errors

® Use redundancy to enable recovery to saved good state
of system

® E.g., go back to old saved version of file that you
corrupted

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

Forward Error Recovery ﬁ("‘

® Canonical example: triple modular redundancy
(TMR)
® Majority voter chooses correct output
B Masks error in any one of the three modules

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

Backward Error Recovery

® Canonical examples
® Periodic checkpoint/recovery
® Logging of changes to system state

® BER designs tend to be more complicated
® Very Rough Comparison: FER vs. BER

Feature

FER

BER

Fault-free

Some

performance degradation

Little
degradation

Performance if | No slowdown

Slow recovery

complexity

faults
Hardware cost |Higher Lower
Design Lower Higher

(c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 4

AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

AT

Performance of FER vs. BER

performance Warning: do not take this graph too
seriously. The relative heights of the curves
and their shapes are gross estimates that
do not correspond to any particular system.

FER

P
-

BER

fault rate

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

System Design Space _\ﬁ(IT

B Systems tend to get only 2 out of 3 features

High Availability

Forward Error
Recovery

Backward Error
Recovery

Low Cost High Performance

Laptops and PCs

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

Physical (Spatial) Redundancy -\\-‘(IT

® Physically replicate a module
® Most obvious approach

® Design issues

® How many replicas are needed?
W For error detection?
B For error correction?

® How are errors detected/corrected?
® |s the redundancy “active” or “passive”?

® Canonical example: triple modular redundancy (TMR)
® 3replicas

® Errors corrected by majority voter

® Redundancy is passive (no special action taken if error
detected)

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

Basic Forms of Hardware Redundancy AT

Karlsruhe Institute of Technology

® Passive hardware redundancy
® relies on voting to mask the occurrence of errors
® can operate without need for error detection or system reconfiguration
® triple modular redundancy (TMR) , N-modular redundancy (NMR),

® Active hardware redundancy

® achieves fault tolerance by error detection, error location, and error
recovery

® duplication and comparison
® standby sparing

® one module is operational and one or more modules serve as standbys or
spares

® Hybrid hardware redundancy

® Fault masking used to prevent the system from producing erroneous
results

® fault detection, location, and recovery used to reconfigure the system
in the event of an error.

® N-modular redundancy with spares.

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

10

Physical Redundancy: TMR -\\-‘(IT

B Strengths

B Tolerates an error in any single module

® Tolerates soft and hard errors

B Simple design

® Small performance penalty, even when faults occur
® Weaknesses

® Can't tolerate multiple faults
® Can't tolerate any faults after a latent hard fault

Expensive hardware (3x cost)

Uses lots of power (approx 3x power of unprotected)
Also a 3x energy cost

Single point of failure at voter

Can’t tolerate errors due to design faults ... why not?

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

11

TMR with 3 Voters _\ﬁ(l'l'

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

® Remove single point of failure e

® Use TMR with 3 voters g
® Restoring organ —)

B Cascade such systems (-

® Multistage TMR with replicate voters

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

Physical Redundancy: NMR -\\-‘(IT

® N-modular redundancy (N is an odd integer)
® Whyis N odd?
® Can tolerate more errors than TMR
® Tolerates up to N/2 — % errors
® Cost = N*cost of module
® Cost = {hardware, power, energy}
® Still has single point of failure at voter!
® But voter is simple and can be designed to be very robust

® One solution to single voter problem
® “Restoring organ” = TMR with triplicated voter
® How does this help?

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

13

(c) 2016, Mehdi Tahoori

Physical Redundancy: Boeing 777 IT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

® Boeing 777 requires near-perfect reliability
® |ts main flight computer:
® Has 3 identical units in a TMR configuration

® Each of these units has 3 processors in a TMR configuration

® The three processors in each unit are heterogeneous!

® Intel 80486 (the x86 before the original Pentium)
® Motorola 68040

| AMD 29050

voter voter voter

—

voter

Reliable Computing I: Lecture 4 14

TMR Iin Complex Networks

Non-redundant network

AT

Karlsruhe Institute of Technology

@_'

e

L J

=0

L 3

F 3

-

Outputs

M, M,
= - —
Input \
— M| Outputs
] M, . M, I —
o A,
. » B,
TMR equivalent
C,
A [T —3 W > A,

Inpu B; ;@_" B;
L —

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

15

Voting in Hardware & Software AT

ttttttttttttttttttt f Technology

® Guarantee majority vote on the input data to the voter

® Ability of detecting own errors (self-checking)

® Determine the faulty replica/node (building the exclusion
logic)

® Voting in networked systems (software)

® requires synchronization of inputs to the voter

® may be difficult to determine voter timeout
W different relative speed of machines
W varying network communication delays

® Voting in hardware systems

® generally does not require an external synchronization of inputs to
the voter

® lock step mode or loosely synchronized mode

® CPUs internally can be out of synch because of non-deterministic
execution of instructions

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

16

Hardware vs. Software Voting schemes -&KIT

______ |Hadwae _____Software

Cost

Flexibility
Synchronization
Performance
Types of voting

(c) 2016, Mehdi Tahoori

High

Inflexible

Tightly

High (fast)

Majority (others costly)

Reliable Computing I: Lecture 4

Low

Flexible

Loosely

Low (slow)

Different (no extra cost)

17

Types of voting -\\-‘(IT

® majority
® in many practical situations it is meaningless
® average

® can have poor performance if a sensor always provide
very low value

® mid value
® a good choice - can be very costly to implement in HW

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4 18

Voter Example (Tandem Integrity) -\\-‘(IT

® Voting on CPU initiated operations

® Voter divided into two parts: majority voter and vote analyzer

® the majority voter generates a bit by bit majority vote from the
three inputs to the voter

® the vote analyzer is a three part comparator and determines
whether one of the inputs is faulty

® Voting logic is duplicated and compared
® a failure in the voting logic results in a self-check error
® Voting on external 1/O operations
® distributed, majority voting performed locally on each CPU

External
Interrupt

CPU1 CPU2 CPU3

: lJ.

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Various Hardware Redundancy Schemes

(c) 2016, Mehdi Tahoori

20

Active hardware redundancy -\\A(IT

® Key - detect fault, locate, reconfigure

® Duplicate with comparison

® can only detect, but NOT diaghose
W |.e. fault detection, no fault-tolerance

® may order shutdown
® comparator is single point of failure

In - Ml - QOut

M2

@

— Agree

Y

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4 21

Active hardware redundancy -\\-‘(IT

® Standby sparing

® One operational unit
B It has its own fault detection mechanism
® On occurrence of fault a second unit (spare) is used
® cold standby - standby is in unknown state
® inactive and must be warmed up
® hot standby - standby is same state as system - quick start
® standby was active and is in correct state
® Can be generalized to n
® One active and n-1 standby spares

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

22

Standby Sparing ﬂ("‘

—9 Module 1 P
Error i
Detection
Input ——#+—»1 Module 2 >
nto1 -
Switch Output
/-L/ °
e Error I
ok - Detection
k2
o
Module n = J
Error _4
Detection

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

AT

More Active Redundancy

® Pair-and-spare
® Combines “duplicate with comparison” with “standby sparing”
® Like standby sparing, except each module is a pair
® This pair compares outputs to detect errors

® Duplicate units (pair of units) are used to compare and signal an error to the
reconfiguration unit

B Second duplicate (pair, and possibly more in case of pair and k-spare) is used
to take over in case the working duplicate (pair) detects an error

W A pair is always operational

compare
module

QI9

module

compare
module

&9

mocdule

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4 24

Hybrid Physical Redundancy ﬁ("

® Combine passive and active redundancy

® Example: NMR with spares
B Let's say we have 5 replicas
® Organize 3 into a TMR scheme
@ Save other 2 for use as spares

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

Hybrid Physical Redundancy ﬁ("

® Combine passive and active redundancy

® Example: NMR with spares
B Let's say we have 5 replicas
® Organize 3 into a TMR scheme
B Save other 2 for use as spares
B After first hard fault, map in a spare

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

Hybrid Physical Redundancy -\\J(IT

® Combine passive and active redundancv
® Example: NMR with spares

Let’'s say we have 5 replicas

Organize 3 into a TMR scheme

Save other 2 for use as spares

After first hard fault, map in a spare

After second hard fault, map in other spare
Even after 2 hard faults, can tolerate a third

Thus, system can tolerate 3 faults that occur
sequentially

Recall that 5SMR can only tolerate 2 faults

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

27

NMR with spares AT

Karlsruhe Institute of Technology

Disagreemem

Unit Disagreemem

output

Switch

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

Hybrid Physical Redundancy ﬁ("

® Self purging redundancy
| initially start with NMR
® all modules are active

® purge one unit at a time till arrive at MR
B exclude modules on error detection
® can tolerate more faults initially compared to NMR with spare

Switch

B 4

Module

1

Module

—
~F

System
Output
System
Inputs

Module

Switch

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4 29

Hybrid Physical Redundancy -\\-‘(IT

® Triple-duplex redundancy

combines duplication-with-compare and TMR
redundant self checking

each node is really 2 modules + comparator
self-disable in event of error

Flux summing
® [nherent property of closed loop control system

® If one module becomes faulty, remaining modules compensate
automatically.

(c) 2016, Mehdi Tahoori Reliable Computing I: Lecture 4

Triple-duplex redundancy

—_—

|

Module 1A

Module 1B

System

Module 2A

Inputs

Module 2B

Module 3A

Module 3B

3 L

(c) 2016, Mehdi Tahoori

/
Compare —]
Compare ‘J

Reliable Computing I: Lecture 4

L —

AT

Karlsruhe Institute of Technology

' 5 B veimn
Compare ,_T

Flux-
Summer

31

