
KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association

INSTITUTE OF COMPUTER ENGINEERING (ITEC) – CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC)

www.kit.edu

Reliable Computing I

Lecture 1: Introduction

Instructor: Mehdi Tahoori

Reliable Computing I: Lecture 1

Today’s Lecture

Logistics

Course Outline

Introduction

2 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Logistics

Instructor: Mehdi Tahoori
Office: Room B2-313.1, Building 07.21

Email: mehdi.tahoori@kit.edu

Tel: 721-608-47778, Fax: 721-608-43962

Office hours: Wednesday 13:00-14:00

Secretary: Ms. Iris Schroeder-Piepka

Lecture:
When: Wednesday 14:00-15:30

Where: Room 236, Building 50.34

Lecture notes
Available online: http://cdnc.itec.kit.edu

Under (Education  current semester  Reliable computing I)

3 (c) 2016, Mehdi Tahoori

http://cdnc.itec.kit.edu/

Reliable Computing I: Lecture 1

Logistics (cont)

Requirements

Computer Architecture

Background on (preferred but not required)

Logic Design

Algorithms and Programming

Operating system (OS)

Basic probabilities

Related Lectures

Testing Digital Systems I and II

4 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Reference Books

D.K. Pradhan, ed., Fault Tolerant Computer
System Design, Prentice-Hall, 1996

D.P. Siewiorek and R.S. Swarz, Reliable
Computer Systems - Design and Evaluation,
Digital Press, 1998, 3rd edition.

I. Koren and C. M. Krishna, Fault-Tolerant
Systems. Morgan Kaufmann, 2007

P. K. Lala, Self-Checking and Fault-Tolerant
Digital Design. Morgan Kaufmann, 2001

B. W. Johnson, Design and Analysis of Fault
Tolerant Digital Systems, Addison Wesley, 1989

 5 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Course Outline

Introduction

Historical perspectives

Motivation for reliable system design

Failure sources

Metrics and definitions

Defects, faults, errors, failures

Reliability metrics

Reliability evaluation

Hardware reliability techniques

Error masking techniques

Error detection and recovery techniques

Software reliability techniques

6 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Course Goals

Understanding the basic concepts in reliable
system design, metrics, evaluation, and
requirements

Introduced to classical fault tolerant techniques

Being familiar to current challenges in reliable
computing

Maybe you become interested in doing research in
reliable computing ;-)

Being able to apply some of these concepts to
systems

Hardware and software

7 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Course Outline (detailed)

Lecture 1: Introduction to reliable computing

Lecture 2: Reliability metrics

Lecture 3: Faults, errors, failures

Lecture 4: Hardware redundancy

Lecture 5: Reliability evaluation

Lecture 6: Information redundancy-1

Lecture 7: Information redundancy-2

Lecture 8: Redundant disk arrays

Lecture 9: Concurrent Error Detection

Lecture 10: Re-execusion

Lecture 11: Checkpointing and Recovery

Lecture 12: Software fault tolerance

8 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Today’s lecture: Outline

Need for reliability: real disaster stories!

Reliability: past, present, future

Challenges

Examples of reliable system design

9 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Correct operation in computing

These are the system components.

All are needed for proper operation

10 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Motivation

Fault tolerance has always been around
NASA’s deep space probes

Medical computing devices (e.g., pacemakers)

But this had been a niche market until fairly recently

But now fault tolerance is becoming more important
More reliance on computers

Extreme fault tolerance
Avionics, car controllers (e.g., anti-lock brakes), power plants and
power delivery network, medical systems, etc.

High fault tolerance
Commercial servers (databases, web servers), file servers, high
performance computing (HPC), etc.

Some fault tolerance
Desktops, laptops (really!), smartphones, game consoles, etc.

11 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Why We Need High Reliability?

High availability systems:
Telephone

Transaction processing: banks/airlines

Long life missions:
Unscheduled maintenance too costly

Long outages, manual reconfiguration OK

Critical applications

Critical applications:
Real-time industrial control

Flight control

Ordinary but widespread applications:
CDs: encoding

Internet: packet retransmission

12 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Stuff Happens

We wouldn’t need fault tolerance otherwise!

Physical problems
Melted wire

Toasted chip

Design flaws
Incorrect logic (e.g., Pentium’s FDIV, AMD’s quad-core TLB bug)

Buggy software (e.g., Vista)

Operator error
Incorrect software installation

Accidental use of rm –R *

Malicious attacks
Security is beyond the scope of this course

13 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

eBay Crash

eBay: giant internet auction house

A top 10 internet business

Market value of $22 billion

3.8 million users as of March 1999

Bidding allowed 24x7

June 6, 1999

eBay system is unavailable for 22 hours with problems
ongoing for several days

Stock drops by 6.5%, $3-5 billion lost revenues

Problems blamed on Sun server software

Shorter downtimes common

14 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Ariane 5 Rocket Crash

Ariane 5 and its payload destroyed about 40

seconds after liftoff (1996)

Error due to software bug:

Conversion of floating point to 16-bit int

Out of range error generated but not handled

Testing of full system under actual conditions not

done due to budget limits

Estimated cost: 120 million DM

15 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

The Therac-25 Failure

Therac-25 is a linear accelerator used for radiation therapy

More dependent on software for safety than predecessors

(Therac-20, Therac-6)

Machine reliably treated thousands of patients, but

occasionally there were serious accidents, involving major

injuries and 1 death (1985-1987).

Software problems:

No locks on shared variables (race conditions).

Timing sensitivity in user interface.

Wrap-around on counters.

16 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Tele Denmark

Tele Denmark Internet, ISP

August 31, 1999

Internet service down for 3 hours

Truck drove into the power supply cabinet at Tele

Denmark

Where were the UPSs?

Old ones had been disconnected for upgrade

New ones were on the truck!

17 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

The Co$t of Failure

18 (c) 2016, Mehdi Tahoori

US Market Share

Reliable Computing I: Lecture 1

The Co$t of Failure

19 (c) 2016, Mehdi Tahoori

 Faulty software may have destroyed

Mars orbiter, says NASA

 January 18, 2007

 (NaturalNews) NASA's Mars Global Surveyor

orbiting craft stopped responding to commands

in November, the administration announced

Wednesday, one day after officials told

scientists that the craft may have been in for

disaster since faulty software was uploaded to

it during the summer.

Reliable Computing I: Lecture 1

The Co$t of Failure

20 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

The Co$t of Failure

21 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

The Co$t of Failure

22 (c) 2016, Mehdi Tahoori

The Pentium Problem

Late last year [1994] there was a major flap in the media about Intel's Pentium (TM) chip.
…

Intel publicly announced that "an error is only likely to occur [about] once in nine billion random
floating point divides", and that "an average spreadsheet user could encounter this subtle flaw once in
every 27,000 years of use." Critics noted that while hitting a pair of "bad inputs" was unlikely, the
Pentium's output for those inputs was wrong every time. Others suggested that some "bad inputs"
might occur with disproportionate frequency in common calculations. Many noted that without
completely repeating massive calculations on other computers, they could never tell if they had indeed
encountered any of the bad inputs. Within a month IBM halted shipment on Pentium-based computers
(which comprised only a small percentage of IBM's computer production) and announced that
"Common spreadsheet programs, recalculating for 15 minutes a day, could produce Pentium-related
errors as often as once every 24 days."

Intel's policy, when it first publicly admitted the problem around November 28 of 1994, was to replace
Pentium chips only for those who could explain their need of high accuracy in complex calculations.
(Being a math professor seemed to help.) Great public outcry ensued, with Intel the butt of many jokes.
By late December Intel capitulated and announced a free replacement Pentium for any owner who
asked for one.
…

Reliable Computing I: Lecture 1

The Co$t of Failure

Samsung Galaxy Note 7 exploding
Samsung's expected losses from the Galaxy Note 7
catastrophe have soared above $5 billion.

More than $19bn was wiped off the company’s market value

23 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Examples of Computer-related Failures

24 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Causes of failures: Tandem

Dominant manufacturer of fault-tolerant computer
systems

For ATM networks, banks, stock exchanges, telephone
switching centers, and other similar commercial transaction
processing applications

Now part of HP

In Gray’s ’85 survey of Tandem customers
30% were “infantile” failures

The rest were broken into (roughly):

Administration 42%

Software 25%

Hardware 18%

Environment (power, etc.) 14%

Unknown 3%

25 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Causes of failures: Vax

VAX crashes ‘85, ‘93; extrapolated to ‘01
System Management includes:

Multiple crashes per problem
System admin Actions: set params, config, bad app install

HW/OS 70% in ‘85 to 28% in ‘93. In ‘01, 10%?
System admin increasingly important

26 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Causes of failures: enterprise servers

Field failure analysis of error logs in enterprise

servers (2008)

36 months, thousands of live systems, half a billion

hours of system operation, servers in various countries

27 (c) 2016, Mehdi Tahoori

Distribution of various failures in the CX3-20

67%

27%

2%

4%

Software-related

Hardware-related

Power-related

SEU-related

50%

32%

3%

15%

Reliable Computing I: Lecture 1

Costs!!!

Example of Average Cost per Hour of Downtime

28 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Reliability: increasing concern

Historical

High reliability in computers was needed in critical

applications: space missions, telephone switching,

process control etc.

Contemporary

Extraordinary dependence on computers: on-line

banking, commerce, cars, planes, communications etc.

Hardware is increasingly more fault-prone

Software is increasingly more complex

Things simply will not work without special reliability

measures

29 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Why Study Reliable Computing!!!

Traditional needs

Long-life applications (e.g., unmanned and manned space
missions)

Life-critical, short-term applications (e.g., aircraft engine
control, fly-by-wire)

Defense applications (e.g., aircraft, guidance & control)

Nuclear industry

Newer critical-computation applications

Health industry

Automotive industry

Industrial control systems, production lines

Banking, reservations, switching, commerce

30 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Why Study Reliable Computing!!! (cont.)

Networks

Wired and wireless networked applications

Data mining

Information processing on the Internet

Distributed, networked systems (reliability and security are
the major concerns)

Intranet - stores, catalog industry (commercial computing)

Cloud computing

Scientific computing, education

Arrival of supercomputers puts high requirements on
reliability

Petascale and exascale computing

31 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Need for fault tolerance: Universal & Basic

Natural objects:

Fat deposits in body: survival in famines

Clotting of blood: self repair

Duplication of eyes: graceful degradation upon failure

Man-made objects

Redundancy in ordinary text

Asking for password twice during initial set-up

Duplicate tires in trucks

Coin op machines: check for bad coins

32 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Reliability issues are not new…

In the July 1834 issue of the Edinburgh Review,

Dr. Dionysius Lardner published the article
“Babbages’s calculating engine”, in which he
wrote:

33 (c) 2016, Mehdi Tahoori

“The most certain and effectual check upon errors

which arise in the process of computation, is to

cause the same computations to be made by

separate and independent computers; and this

check is rendered still more decisive if they make

their computations by different methods.”

The SAPO (Samočinný počítač) fault-tolerant computer system

Designed and built between
1950 and 1956 by Antonín
Svoboda in Prague

Three parallel arithmetic
units, which decided on the
correct result by voting (TMR)

Electromechanical design:
7000 relays,

400 vacuum tubes

magnetic drum memory

The system burnt down in the
year 1960 after a relay failure

First Fault-Tolerant Computer

34 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Timeline

35 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Only 25 years in between

36 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Moore’s Law

37 (c) 2016, Mehdi Tahoori

1nm

10

100

1um

10

100

1mm

10

100

1900 1920 1940 1960 1980 2000 2020

T
y
p
ic

a
l
S

iz
e

Vacuum

Tube

Transistor

1947

Integrated Circuit

1958

Moore’s Law

 1965

Intel Broadwell

14nm, 2014

US

Penny

Bacteria

Single

Atom

Reliable Computing I: Lecture 1

Technology scaling

Decrease feature size from generation
to generation

Typical: scale down dimensions by 30%

Scaling essentially aims towards:
Higher speed

Lower power

Higher density

38 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1 39 (c) 2016, Mehdi Tahoori

Demand for higher performance and lower power

Transistor feature size down-scaling

Transistor down-scaling

[Source: Intel]

Reliable Computing I: Lecture 1

Reliability Threats: Variability & Vulnerability

40 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1 41 (c) 2016, Mehdi Tahoori

Process variation:

Device parameters vary among devices

Runtime variation:

Aging: transistors slow down over time

Voltage variation

Soft errors: bit-flip due to cosmic rays

Designed Fabricated

D Q D Q

VDD

Clock

Nominal VDD

Time

Actual VDD

[Source: IBM]
Designed Fabricated

Major unreliability sources

Reliable Computing I: Lecture 1 42 (c) 2016, Mehdi Tahoori

Soft Error

Radiation-induced transient fault

Strike of energetic particles

Charge collection

“Soft” - intermittent and transient

Evidence of soft error

Energetic

particles
+V

n
p

Electron-Hole

Pairs

V

© Baumann

1975

first reported soft error

in satellites

1984, IBM

first reported soft errors

due to cosmic radiation

1978, Intel

first reported soft error

due to alpha particles

2000, Sun Microsystems

soft errors caused flagship servers

to suddenly and mysteriously crash

2010, Toyota

no error detection/correction in controller RAM

"Unintended Acceleration" killed 89 persons

2008, QANTAS Flight A330

soft error within the CPU module

emergency landing with122 persons injured

1970 1980 1990 2000 2010

Voltage

Time

250 180 130 90 65 45 32 22

0

0.5

1

1.5

2

2.5

3

3.5

4

System_SER

PerBit_SER

S
o

ft
 E

rr
o

r
R

a
te

 (
n

o
rm

a
li

z
e

d
)

Technology node (nm) [IbeTED10] © Baumann Technology Node (nm)

S
o

ft
 E

rr
o

r
R

a
te

 (
n

o
rm

a
li
z
e

d
)

Reliable Computing I: Lecture 1

Variability

At die, wafer, lot of wafers

Impacts

Timing

Performance

Power consumption

Leakage

Robustness

Defect densities

Yield

43 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Variability effects over time

High temporal variability

44 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Increasing Device Count per Chip

Increased number of transistors that each chip
statistically samples from the device parameter
distribution.

To achieve comparable chip-level yields via
margining, we are forced to accept a larger
spread of device characteristics.

45 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Reliability trends

(c) 2016, Mehdi Tahoori

0

10

20

30

40

50

32nm
2010

22nm
2012

14nm
2014

10nm
2016

7nm
2018

5nm
2020

In
cr

e
a
se

 (
X
)

Aging

Variability Freq.

Soft Error

© Intel 2014

Total Failure
Rate

Burn
in

Wearout

Fa
ilu

re
 R

at
e

Time

Total Failure
Rate

Burn
in

Wearout

Fa
ilu

re
 R

at
e

Time

Total Failure
Rate

Burn
in

Wearout

Fa
ilu

re
 R

at
e

Time

Total Failure
Rate

Burn
in

Wearout

Fa
ilu

re
 R

at
e

Time

Total Failure
Rate

Burn
in

Wearout

Fa
ilu

re
 R

at
e

Time

Reliable Computing I: Lecture 1

Errors in Hardware and Software

47 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Why Fault Tolerance Isn’t Easy

Fault tolerance can be solved to any arbitrary

degree if you’re willing to throw resources at the

problem

Resources to sacrifice:

System performance

Cost

Power

48 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Trying Not To Lose Performance

There are many FT approaches that sacrifice performance
to tolerate faults

Example 1

Periodically stop the system and checkpoint its state to disk

If fault occurs, recover state from checkpoint and resume

Example 2

Log all changes made to system state in case recovery is needed

During recovery, undo the changes from the log

Example 3

Run two identical systems in parallel

Compare their results before using them

Example 4

Run software with lots of assertions and error checking

49 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Performance Issues

Most important not to degrade performance during

fault-free operation

This is the common-case  make it fast!

Amdahl’s Law

Somewhat less important not to degrade

performance when a fault occurs

This still might not be acceptable in certain situations

(e.g., real time systems)

50 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Trying Not To Increase Cost

There are many FT approaches that sacrifice cost

to tolerate faults

Example 1

Replicate the hardware 3 times and vote to determine

correct output

Example 2

Mirror the disks (RAID-1) to tolerate disk failures

Example 3

Use multiple independent versions of software to

tolerate bugs

Called N-version programming

51 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Trying Not To Increase Power

There are many FT approaches that sacrifice power to
tolerate faults

Examples 1, 2 & 3 (same as previous slide)

Replicate the hardware 3 times and vote to determine
correct output

Mirror the disks (RAID-1) to tolerate disk failures

Use multiple independent versions of software to tolerate
bugs

Example 4

Add continuously running checking hardware to system

Example 5

Add extra code to check for software faults

52 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Levels of Fault Tolerance

Fault tolerance can be at many levels in a system:

Application software

Adding assertions to code

Operating system

Protecting OS from hanging

Entire hardware system

Hardware sub-system

Circuits and transistors

53 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Example 1: Telephone Switching System

Extreme availability

Goal: <3 minutes of downtime per year

Goal: <0.01% of calls processed incorrectly

Uses physical redundancy

Hardware cost: about 2.5 times cost of equivalent
non-redundant system

Also uses:

Error detecting/correcting codes (e.g., parity, CRC)

Watchdog timers

Many forms of diagnostics

Dynamic verification (“sanity program”)

54 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Example 2: IBM Mainframes

Lots of fault tolerance  high availability

Note: IBM has produced mainframes since the

1960s, and they’ve changed their design and

enhanced their fault tolerance several times since

then

Redundancy at many levels

Redundant units within processor (e.g., register file)

Redundant processors

Diagnostic hardware for isolating faults

Reliable operating system

55 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Example 3: My (previous) Laptop

Minimal fault tolerance

Designed to be cheap and fast … and obsolete in a
few years

May have parity or ECC on:
Some bus lines

DRAM

Hard disk

Expected lifetime (as expected by me): 2 years

Expected Mean Time To Reboot (also by me): 1 week

Expected Mean Time To Re-install: 6 months

Expected probability of it successfully coming out of
“hibernation” mode: 0

56 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Example 4: Database Software (Oracle, DB2)

Lots of fault tolerance

Can’t afford to corrupt vital data

Enforces “ACID” properties for transactions & data

Atomicity: transactions are atomic

Consistency: only valid data written to database

Isolation: transactions don’t interfere with each other

Durability: data written to database won’t be lost

Implemented with logging and checkpointing

Writes important data to disks

Can even tolerate a fault that occurs while writing to
disks

57 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

CDNC Teaching Modules

58 (c) 2016, Mehdi Tahoori

Reliable Computing I: Lecture 1

Labs

FPGA Programming

Introduction to FPGAs

Circuit development for FPGAs

Hands-on experiments with
FPGAs

Intel Galileo Design Lab

Introduction to Intel Galileo

Circuit development

Hands-on experiments

(c) 2016, Mehdi Tahoori 59

Labs

 Digital Design and Test Flow

 Introduction to algorithms and tools for Electronic Design

Automation

 The entire design flow from specification to chips

(c) 2016, Mehdi Tahoori 60

Reliable Computing I: Lecture 1

Seminars

Non-Volatile Memory Technologies

Introduction to non-volatile memories

Can these be used to replace SRAM/DRAM?

Near Threshold Computing

A standard transistor operates with a voltage >> Vth

In near threshold computing the voltage is lowered to
~Vth

Advantage: Huge power savings

Challenge: Performance

(c) 2016, Mehdi Tahoori 61

HiWi and Studienarbeit

 Hiwi positions

 To help with various research projects in dependable computing

 Required knowledge

• Programming

• Digital design and computer architecture (DT+RO)

 Studienarbeit

 Various projects related to

• Computer archiecture and logic design

• Dependable computing

Contact us if interested & for more details: cdnc@ira.uka.de

(c) 2016, Mehdi Tahoori 62

