

Possible Assumptions Used in Diagnosis

- Stuck-At Fault Model Assumption
 - The defect behaves like a stuck-at fault
- Single Fault Assumption
 - Only one fault affecting any faulty output
- Logical Fault Assumption
 - A fault manifests itself as a logical error
- Full-Scan Assumption
 - The chip under diagnosis has to be full-scanned

Note: A diagnosis approach less dependent on the fault assumptions is more capable of dealing with practical situations.

Copyright 2016, M. Tahoori

TDSII: Lecture 10

5

Major Approaches

- Cause-Effect Analysis
- Effect-Cause Analysis
- Diagnostic Test Pattern Generation

Copyright 2016, M. Tahoori

TDSII: Lecture 10

Cause-Effect Analysis

- Fault dictionary (pre-analysis of all causes)
 - Records test response of every fault under the applied test set
 - Built by intensive fault simulation process
- A chip is diagnosed (effect matching)
 - By matching up the failing syndromes observed at the tester with the pre-stored fault dictionary

Copyright 2016, M. Tahoori

TDSII: Lecture 10

Lecture 10

Backtrace Algorithm

- Trace back from each mismatched PO
 - To find out suspicious faulty locations
- Functional Pruning
 - During the traceback, some signals can be disqualified from the fault candidate set based on their signal values.
- Rules
 - (1) At a controlling case (i.e., 0 for a NAND gate): Its fanin signals with non-controlling values (i.e., 1) are excluded from the candidate set.
 - (2) At a non-controlling case (i.e., 1 for a NAND gate): Every fanin signal remains in the candidate set.

Copyright 2016, M. Tahoori

TDSII: Lecture 10

12

Summary: Scan Chain Diagnosis

- Hardware Assisted
 - Extra logic on the scan chain
 - Good for stuck-at fault
- Fault Simulation Based
 - To find a faulty circuit matching the syndromes
 - Tightening heuristic → upper & lower bound
 - Use single-excitation pattern for better resolution
- Profiling-Based Method
 - Locate the fault directly from the difference profiles obtained by run-and-scan test
 - Applicable to bridging faults
 - Use signal processing techniques such as filtering and edge detection

Copyright 2016, M. Tahoori

TDSII: Lecture 10

24

Diagnosis for BIST Logic

- Diagnosis in a BIST environment requires
 - determining from compacted output responses which test vectors have produced a faulty response (time information)
 - determining from compacted output responses which scan cells have captured errors (space information)
- The true fault location inside the logic
 - Can then be inferred from the above space and time information using combinational logic diagnosis

Copyright 2016, M. Tahoori

TDSII: Lecture 10

25

Lecture 10

