

Lecture 7: Boolean Testing Using Fault Models

Instructor: M. Tahoori

Copyright 2011, M. Tahoori

TDS I: Lecture 7

1

This Lecture

- Specific Fault Objective Target Fault
 - Boolean
 - Algebraic and Boolean Difference
 - Path Tracing
 - D Algorithm, PODEM, Fan

Copyright 2011, M. Tahoori

TDS I: Lecture 7

2

1

Fault Model-based Test Sets

- Good or Fault-Free Circuit
 - Circuit with No Faults Present
- Faulty Circuit
 - Circuit with Fault Present
- Detection vs Diagnosis

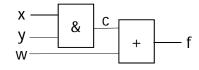
Copyright 2011, M. Tahoori

TDS I: Lecture 7

Specific-Fault Oriented Test Generation

- Two fundamental test generation steps
 - ACTIVATE, Excite, Provoke or Setup the Fault
 - Make Fault OBSERVABLE, Fault Sensitization
 - Find Primary Input Values that Cause
 - Error Signal in Faulty Circuit
 - For Single-Stuck-at-v Fault
 - Place v' at Fault Site
 - PROPAGATE the Resulting Error to a Primary Output
 - Path Sensitization
 - Find Primary Input Values that Sensitize
 - Error Signal to Primary Output

Copyright 2011, M. Tahoori


TDS I: Lecture 7

Specific-Fault Oriented Test Generation

- Example: Test for c/0 is w,x,y = 0,1,1
 - ACTIVATE Fault c/0
 - Set x = y = 1 to make c=1in Fault-free Circuit
 - PROPAGATE Value on c to f
 - Set w =0 to sensitize c to f

Copyright 2011, M. Tahoori

TDS I: Lecture 7

Line Justification

- Find Input Assignment to Place Value v on Line g
- Algebraic Approach
 - Find Boolean Function Realized on line g = G(X)
 - Use Prime Implicant of G(X) to Place 1 on g
 - Use Prime Implicate of G(X) to Place 0 on g
- PROPAGATE Error (Fault Effect)
 - Algebraic Approach
 - Use Boolean Difference

Copyright 2011, M. Tahoori

TDS I: Lecture 7

6

Lecture 7

Boolean Difference

Copyright 2011, M. Tahoori

TDS I: Lecture 7

Boolean Difference

- Shannon expansion
 - A Boolean function f(X₁, X₂, ... X_n) can be expanded about any variable X_i
 - $\quad \bullet \quad f(X_1, \ X_2, \ \dots \ X_n) \ = \ X_i'f(X_1, \dots, X_i \ = \ 0, \dots X_n) \ + X_if(X_1, \dots, X_i \ = \ 1, \dots X_n)$
- Boolean Difference of f(X1, X2, ... Xn) with respect to Xi
- Symbol is (partial derivation)

$$\frac{d f(X1, Xi, ... Xn)}{dXi}$$

Definition is:

$$\frac{\mathrm{d}f}{\mathrm{d}Xi} = f_{Xi'} \oplus f_{Xi} = f(X1,...,Xi = 0,...Xn) \oplus f(X1,...,Xi = 1,...Xn)$$

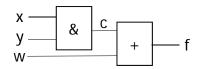
Copyright 2011, M. Tahoori

TDS I: Lecture 7

Boolean Difference

- Example
 - f = w + xy,
 - $f_{v'} = w$

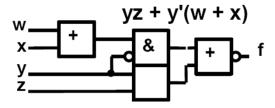
 - $\frac{df}{dy} = (w) \oplus (w + x) = w'x$


Copyright 2011, M. Tahoori

TDS I: Lecture 7

Boolean Difference

$$df(x,y,w) = 1$$


- for values of w and x for which <u>f depends on y</u>
- $df(x,y,w) \over dy = 0$
 - for values of w and x for which <u>f is independent of y</u>
- df(w+xy) = w'x
 - w'x = 1, for w=0, x=1
 - When w = 0, x = 1, w + xy = y

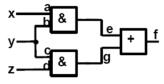
Copyright 2011, M. Tahoori

TDS I: Lecture 7

Boolean Difference

- Example
 - $df/dy = fy' \oplus fy$
 - $= (W + X) \oplus Z$
 - = WZ' + XZ' + W'X'Z

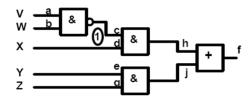
Copyright 2011, M. Tahoori


TDS I: Lecture 7

11

Boolean Difference

- Test pattern generation
 - $df/dx = d(xy+yz)/dx = yz \oplus (y + yz) = yz'$
- Test for a/0 is xyz = (110)
 - Set x = 1 to *Provoke* Fault
 - Set y = 1 , z = 0 to *Sensitize* Fault Site to Output


Copyright 2011, M. Tahoori

TDS I: Lecture 7

Boolean Difference

- Test pattern generation
 - C/1
 - $df/dc = d(cx+yz)/dc = yz \oplus (x + yz) = x(y' + z) = x(y' + z')$
 - To Propagate Fault, Set x = 1, y or z = 0
 - C = V' + W'
 - For c/1, must set c = 0,
 - SO V = W =1

Copyright 2011, M. Tahoori

TDS I: Lecture 7

13

Boolean Difference

- Algebraic Technique to Determine
 - Path Sensitization from Fault Site to Output, or
 - Fault Observability Conditions
- Used Mainly for Theoretical Studies

Copyright 2011, M. Tahoori

TDS I: Lecture 7

Path Tracing

Copyright 2011, M. Tahoori

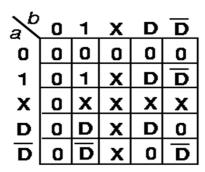
TDS I: Lecture 7

15

Test Generation Using Path Tracing

- Notation
 - D Signal Value
 - 1 in Fault-free Circuit, 0 in Faulty Circuit
 - D' or D Signal Value
 - 0 in Fault-free Circuit, 1 in Faulty Circuit
 - X
 - Signal Value is Unspecified

Copyright 2011, M. Tahoori


TDS I: Lecture 7

16

Notation

Truth Table for AND

Copyright 2011, M. Tahoori

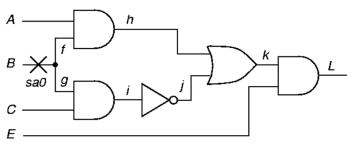
TDS I: Lecture 7

17

Path Sensitization Method

- Fault Sensitization
 - Force tested node to opposite of fault value
- Fault Propagation (path sensitization)
 - Propagate the effect to one or more POs
- Line Justification
 - Justify internal signal assignments made to activate and sensitize fault
- These three steps may result in conflict
 - Different values are assigned to the same signal
 - Require backtracking

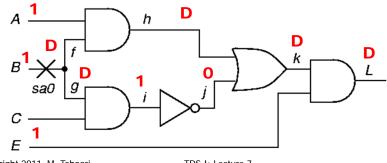
Copyright 2011, M. Tahoori


TDS I: Lecture 7

18

Path Sensitization Method

- Example (B stuck-at 0)
- Fault activation
 - Requires B = 1, f = D, g = D
- Fault propagation
 - Three scenarios are possible
 - paths f h k L, g i j k L, or both

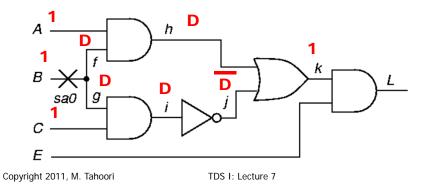

Copyright 2011, M. Tahoori

TDS I: Lecture 7

19

Path Sensitization Method

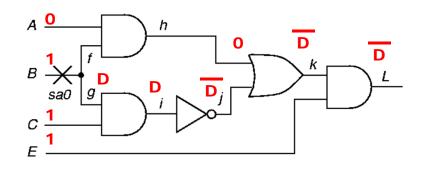
- Try path f h k L
 - Requires A = 1, j = 0, E = 1
- Blocked at j
 - Since there is no way to justify 1 on i


Copyright 2011, M. Tahoori

TDS I: Lecture 7

Path Sensitization Method

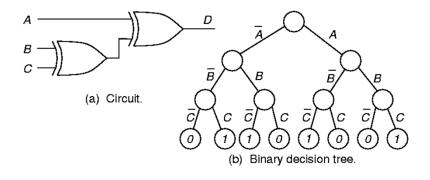
- Try simultaneous
 - paths f h k L and g i j k L
- Blocked at k because
 - D-frontier (chain of D or D) disappears



21

Path Sensitization Method

- Final try: path g i j k L
 - test found!


Copyright 2011, M. Tahoori

TDS I: Lecture 7

Search Space Abstraction

- Binary Decision Tree (BDT)
 - The leaves represent the output of the good machine

Copyright 2011, M. Tahoori

TDS I: Lecture 7

23

Algorithm Completeness

- All ATPG programs implicitly search BDT
- Definition:
 - Algorithm is complete if it ultimately can search entire binary decision tree, as needed, to generate a test
- Untestable fault
 - No test for it even after entire tree searched
- Combinational circuits only
 - Untestable faults are redundant, showing the presence of unnecessary hardware

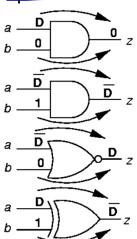
Copyright 2011, M. Tahoori

TDS I: Lecture 7

24

ATPG Problem

- Ibarra and Sahni in 1975 showed that ATPG is NP_Complete
 - No polynomial-time algorithm is known
 - Presumed to be exponential
- These ATPG algorithms employ heuristics that
 - Find all necessary signal assignments for a test
 - As early as possible
 - Search as little of the decision space as possible


Copyright 2011, M. Tahoori

TDS I: Lecture 7

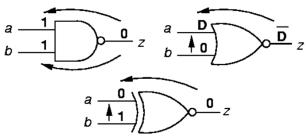
25

Forward Implication

- Results in logic gate inputs that are significantly labeled so that output can be uniquely determined
- Example
 - AND gate forward implication table:

a^b	0	1	X	D	D
0	0	0	0	0	0
1	0	1	X	D	р
X	0	X	X	X	X
D	0	D	Х	D	0
$\overline{\mathbf{D}}$	0	D	X	0	р

Copyright 2011, M. Tahoori

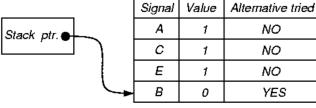

TDS I: Lecture 7

26

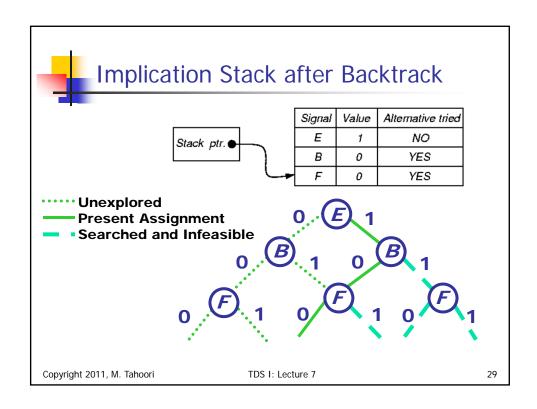
Backward Implication

- Unique determination of all gate inputs when the gate output and some of the inputs are given
- Backward implication is implemented procedurally
 - Since tables are cumbersome for gates with more than 2 inputs

Copyright 2011, M. Tahoori

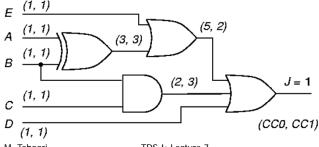

TDS I: Lecture 7

27


Implication Stack

- Push-down stack. Records:
 - Each signal set in circuit by ATPG
 - Whether alternate signal value already tried
 - Portion of binary search tree already searched
- Example
 - PIs were set in order A, C, E, and B
 - B was set to 1 but failed

Copyright 2011, M. Tahoori


TDS I: Lecture 7

Objectives and Backtracing of ATPG

- Objective: desired signal value goal for ATPG
 - Guides it away from infeasible/hard solutions
 - Intermediate signal assignments may make it impossible to achieve it
- Backtrace: Determines which primary input and value to set to achieve objective
 - Use testability measures

Copyright 2011, M. Tahoori

TDS I: Lecture 7

Branch-and-Bound Search

- An efficiently search method of binary search tree
- Branching
 - At each tree level, selects which input variable to set to what value (0 or 1)
- Bounding
 - Avoids exploring large tree portions by restricting search decision choices
 - Complete exploration is impractical
 - Decision about bounding made with limited information
 - Uses heuristics

Copyright 2011, M. Tahoori

TDS I: Lecture 7

31

Specific-Fault Oriented Test Generation

- Three Approaches
 - D Algorithm: Internal Line Values Assigned (Roth-1966)
 - D-cubes
 - Bridging faults
 - Logic gate function change faults
 - PODEM: Input Values Assigned (Goel 1981)
 - X-Path-Check
 - Backtracing
 - FAN: Input and Internal Values Assigned (1983)

Copyright 2011, M. Tahoori

TDS I: Lecture 7

32