Lecture 7:
Boolean Testing Using Fault Models

Instructor: M. Tahoori

This Lecture

- Specific Fault Objective — Target Fault
 - Boolean
 - Algebraic and Boolean Difference
 - Path Tracing
 - D Algorithm, PODEM, Fan
Fault Model-based Test Sets

- Good or Fault-Free Circuit
 - Circuit with No Faults Present
- Faulty Circuit
 - Circuit with Fault Present
- Detection vs Diagnosis

Specific-Fault Oriented Test Generation

- Two fundamental test generation steps
 - **ACTIVATE**, Excite, Provoke or Setup the Fault
 - Make Fault OBSERVABLE, Fault Sensitization
 - Find Primary Input Values that Cause
 - Error Signal in Faulty Circuit
 - For Single-Stuck-at-v Fault
 - Place v’ at Fault Site
 - **PROPAGATE** the Resulting Error to a Primary Output
 - Path Sensitization
 - Find Primary Input Values that Sensitize
 - Error Signal to Primary Output
Specific-Fault Oriented Test Generation

- Example: Test for c/0 is \(w,x,y = 0,1,1 \)
 - ACTIVATE Fault c/0
 - Set \(x = y = 1 \) to make \(c=1 \)
 - in Fault-free Circuit
 - PROPAGATE Value on c to f
 - Set \(w = 0 \) to sensitize c to f

Line Justification

- Find Input Assignment to Place Value v on Line g
- Algebraic Approach
 - Find Boolean Function Realized on line \(g = G(X) \)
 - Use Prime Implicant of \(G(X) \) to Place 1 on g
 - Use Prime Implicate of \(G(X) \) to Place 0 on g

- PROPAGATE Error (Fault Effect)
 - Algebraic Approach
 - Use Boolean Difference
Boolean Difference

- Shannon expansion
 - A Boolean function \(f(X_1, X_2, \ldots, X_n) \) can be expanded about any variable \(X_i \)
 - \(f(X_1, X_2, \ldots, X_n) = X_i f(X_1, \ldots, X_i = 0, \ldots X_n) + X_i f(X_1, \ldots, X_i = 1, \ldots X_n) \)
- Boolean Difference of \(f(X_1, X_2, \ldots, X_n) \) with respect to \(X_i \)
- Symbol is (partial derivation)
 \[
 \frac{df}{dX_i} = f(X_1, X_i, \ldots, X_n) \]
- Definition is:
 \[
 \frac{df}{dX_i} = f(X_1, \ldots, X_i = 0, \ldots X_n) \oplus f(X_1, \ldots, X_i = 1, \ldots X_n)
 \]
Boolean Difference

Example

\[f = w + xy, \]

\[f_y' = w \]

\[f_y = w + x \]

\[\frac{df}{dy} = (w) \oplus (w + x) = w'x \]

\[df(x, y, w) \]

\[\frac{df(x, y, w)}{dy} = 1 \]

for values of \(w \) and \(x \) for which \(f \) depends on \(y \)

\[df(x, y, w) \]

\[\frac{df(x, y, w)}{dy} = 0 \]

for values of \(w \) and \(x \) for which \(f \) is independent of \(y \)

\[df(w + xy) \]

\[\frac{df(w + xy)}{dy} = w'x \]

\[w'x = 1, \text{ for } w=0, x=1 \]

When \(w = 0, x = 1, w + xy = y \)
Boolean Difference

- **Example**
 - $df/dy = fy' \oplus fy$
 - $= (w + x) \oplus z$
 - $= wz' + xz' + w'x'z$

- **Test pattern generation**
 - $df/dx = d(xy + yz)/dx = yz \oplus (y + yz) = yz'$
 - Test for a/0 is $xyz = (110)$
 - Set $x = 1$ to *Provoke* Fault
 - Set $y = 1, z = 0$ to *Sensitize* Fault Site to Output
Boolean Difference

Test pattern generation
- C/1
- \(\frac{df}{dc} = \frac{d(cx+yz)}{dc} = yz \oplus (x + yz) = x(y' + z) = x(y' + z') \)
- To Propagate Fault, Set \(x = 1, y \) or \(z = 0 \)
- \(c = v' + w' \)
- For C/1, must set \(c = 0 \), so \(v = w = 1 \)

Algebraic Technique to Determine
- Path Sensitization from Fault Site to Output, or
- Fault Observability Conditions
- Used Mainly for Theoretical Studies
Path Tracing

Test Generation Using Path Tracing

- **Notation**
 - D Signal Value
 - 1 in Fault-free Circuit, 0 in Faulty Circuit
 - D' or \bar{D} Signal Value
 - 0 in Fault-free Circuit, 1 in Faulty Circuit
 - X
 - Signal Value is Unspecified
Notation

Truth Table for AND

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>0</th>
<th>1</th>
<th>X</th>
<th>D</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>D</td>
<td>D</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>D</td>
<td>X</td>
<td>D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>D</td>
<td>X</td>
<td>0</td>
<td>D</td>
<td>0</td>
</tr>
</tbody>
</table>

Path Sensitization Method

- Fault Sensitization
 - Force tested node to opposite of fault value
- Fault Propagation (path sensitization)
 - Propagate the effect to one or more POs
- Line Justification
 - Justify internal signal assignments made to activate and sensitize fault
- These three steps may result in conflict
 - Different values are assigned to the same signal
 - Require backtracking
Path Sensitization Method

- Example (B stuck-at 0)
- Fault activation
 - Requires $B = 1$, $f = D$, $g = D$
- Fault propagation
 - Three scenarios are possible
 - paths $f - h - k - L$, $g - i - j - k - L$, or both

Try path $f - h - k - L$
- Requires $A = 1$, $j = 0$, $E = 1$
- Blocked at j
 - Since there is no way to justify 1 on i
Path Sensitization Method

- Try simultaneous paths $f \rightarrow h \rightarrow k \rightarrow L$ and $g \rightarrow i \rightarrow j \rightarrow k \rightarrow L$
- Blocked at k because D-frontier (chain of D or \overline{D}) disappears

![Diagram](image1)

Path Sensitization Method

- Final try: path $g \rightarrow i \rightarrow j \rightarrow k \rightarrow L$
- Test found!
Search Space Abstraction

- Binary Decision Tree (BDT)
 - The leaves represent the output of the good machine

(a) Circuit.

(b) Binary decision tree.

Algorithm Completeness

- All ATPG programs implicitly search BDT
- Definition:
 - Algorithm is complete if it ultimately can search entire binary decision tree, as needed, to generate a test
- Untestable fault
 - No test for it even after entire tree searched
- Combinational circuits only
 - Untestable faults are redundant, showing the presence of unnecessary hardware
ATPG Problem

- Ibarra and Sahni in 1975 showed that ATPG is NP.Complete
 - No polynomial-time algorithm is known
 - Presumed to be exponential
- These ATPG algorithms employ heuristics that
 - Find all necessary signal assignments for a test
 - As early as possible
 - Search as little of the decision space as possible

Forward Implication

- Results in logic gate inputs that are significantly labeled so that output can be uniquely determined
- Example
 - AND gate forward implication table:
Backward Implication

- Unique determination of all gate inputs when the gate output and some of the inputs are given
- Backward implication is implemented procedurally
 - Since tables are cumbersome for gates with more than 2 inputs

Implication Stack

- Push-down stack. Records:
 - Each signal set in circuit by ATPG
 - Whether alternate signal value already tried
 - Portion of binary search tree already searched
- Example
 - PIs were set in order A, C, E, and B
 - B was set to 1 but failed
Implication Stack after Backtrack

<table>
<thead>
<tr>
<th>Signal</th>
<th>Value</th>
<th>Alternative tried</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>1</td>
<td>NO</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>YES</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>YES</td>
</tr>
</tbody>
</table>

Objectives and Backtracing of ATPG

- **Objective**: desired signal value goal for ATPG
 - Guides it away from infeasible/hard solutions
 - Intermediate signal assignments may make it impossible to achieve it
- **Backtrace**: Determines which primary input and value to set to achieve objective
 - Use testability measures

![Diagram](Image)
Branch-and-Bound Search

- An efficiently search method of binary search tree
- Branching
 - At each tree level, selects which input variable to set to what value (0 or 1)
- Bounding
 - Avoids exploring large tree portions by restricting search decision choices
 - Complete exploration is impractical
 - Decision about bounding made with limited information
 - Uses heuristics

Specific-Fault Oriented Test Generation

- Three Approaches
 - **D Algorithm**: Internal Line Values Assigned (Roth-1966)
 - D-cubes
 - Bridging faults
 - Logic gate function change faults
 - **PODEM**: Input Values Assigned (Goel – 1981)
 - X-Path-Check
 - Backtracing
 - **FAN**: Input and Internal Values Assigned (1983)