Lecture 5: Built-in Self Test (I)

Instructor: M. Tahoori

Outline

- Introduction (Lecture 5)
- Test Pattern Generation (Lecture 5)
 - Pseudo-Random
 - Pseudo-Exhaustive
- Output Response Analysis (Lecture 6)
 - Duplication
 - Response Compaction
 - Signature Analysis
- BIST Architectures (Lecture 7)
Built-In Self Test

Definition:
- Capability of a product
 - chip, multichip assembly, or system
- To carry out an explicit test of itself

Requires
- Test Pattern Generation
- Output Response Analysis
- One or both integral to the product
- Minimal external test equipment required

A Typical Logic BIST System

Structural off-line BIST
Built-In Self Test

- Why BIST (Built-In Self Test)?
 - Improved product quality
 - Faster debug
 - Better diagnosis
 - Thorough test — very many high-speed patterns
 - Economical production test
 - Improved field test and maintainability
- What are its drawbacks?
 - Initial design investment
 - Possible performance or area overhead

BIST Techniques

- Enhanced functional self-test software routines
- Exhaustive and pseudo-exhaustive
- Pseudo-random (PR-BIST)
BIST Techniques

- Enhanced functional self-test software routines
 - For field test and diagnosis
 - Advantage:
 - No hardware modifications
 - Disadvantages:
 - Low hardware fault coverage
 - Low diagnostic resolution
 - Slow to operate
 - Labor intensive, low fault coverage

- Exhaustive and pseudo-exhaustive
 - + Thorough test of stuck faults
 - + Minimal simulation required
 - - Difficult to implement for arbitrary designs

BIST Techniques

- Pseudo-Random (PR-BIST)
 - Separate (Serial Scan-Loaded Test Patterns)
 - External Pattern Generation, Response Analysis
 - Embedded PR-BIST (System Bistables Reconfigured)
 - BILBO - Multiple Test Configurations
 - Circular
BIST Attributes: Fault Characteristics

Fault classes tested
- Single-stuck faults in functional circuitry
- Combinational faults in functional circuitry
- Delay faults
- Interchip wiring and chip I/O connections

Fault coverage
- Percentage of faults guaranteed to be detected

BIST Attributes: Cost Characteristics

Area overhead
- Additional active area, interconnect area
 - Test controller
 - Hardware pattern generator
 - Hardware response compacter
 - Testing of BIST hardware

Pin overhead: Additional pins required for testing
Performance penalty: Added path delays
Yield loss: Due to increased area
Reliability reduction: Due to increased area
BIST Attributes: Other Characteristics

- Generality
 - Degree of function dependence
- Time required to execute test
- Diagnostic resolution
- Engineering changes
 - Effect on BIST structure
- Functional circuitry
 - Scan path?
 - Design changes?

BIST Attributes: Other Characteristics

- Test Pattern Generation
 - Exhaustive
 - Pseudo-Exhaustive
 - Pseudo-Random
- Response Analysis
 - LFSR
 - Duplication
Exhaustive and Pseudo-Exhaustive Test

- Exhaustive Test of n-Input Combinational Circuit
 - Apply all \(N = 2^n \) Patterns
- Pseudo-Exhaustive Test of Combinational Circuit
 - Subdivide the Circuit into Segments
 - Apply all Possible Inputs to each Segment
- Input patterns — \(2^m \) m-bit patterns
 - binary counter
 - Gray counter
 - m-stage Modified ALFSR

Test Patterns

- Stored Off Line
 - Patterns are generated and stored
 - Simulation used to identify patterns for removal
- "Just-in-Time"
 - Patterns are generated during test application
 - External tester generates patterns
 - Patterns generated on same chip or board as device under test
 - +Easy to Generate
 - +Detect Non- single-stuck faults
 - -Long
 - Coverage Expensive to Determine
Random vs Pseudorandom

- Random Source
 - Patterns can occur more than once
 - Non-reproducible
- Pseudorandom Source
 - All (possibly except all-0 pattern) Patterns
 - Occur Before Any Pattern Repeats
 - Reproducible

Test Pattern Generator
Pseudo-Random Test Pattern Generator

- **Four-stage ALFSR — Standard or External Form**
 - Autonomous Linear Feedback Shift Register

 ![Diagram of Four-stage ALFSR](image)

 - Output Sequence: \(a(t + 4) = a(t + 3) \oplus a(t) \)
 - Generating Function: \(f(x) = x^4 + x^3 + 1 \)
 - Feedback Vector: \(H = <h_4, h_3, ..., h_0> = <1, 1, 0, 0, 1> \)

Pseudo-Random Test Pattern Generator

- **Operator Notation**
 - \(X^i a(t) = a(t+i) \)
 - \((X^3 + X + 1) a(t) = a(t+3) + a(t+1) + a(t) \)
Standard Form ALFSR

- **Output Sequence:** \(a(t + N) = \sum_{i=0}^{N-1} h_i a(t + i) \mod 2 \)
- **Generating Function:** \(f(x) = \sum_{i=0}^{N} h_i x^i \mod 2 \)

Four-Stage Modular ALFSR (Divider)

- **Generating Function:** \(f(x) = x^4 + x^3 + 1 \)
- **Feedback Vector:** \(H = \langle h_4, h_3, \ldots, h_0 \rangle = \langle 1, 1, 0, 0, 1 \rangle \)
Modular ALFSR (Divider)

- **Generating Function:** \(f(x) = \sum_{i=0}^{N} h_i x^i \mod 2 \)

4-stage standard and modular LFSRs

- **4-stage Standard LFSR**
 \[f(x) = 1 + x^2 + x^4 \]

- **4-stage Modular LFSR**
 \[f(x) = 1 + x + x^4 \]
Primitive VS Non-Primitive

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Non-Primitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^3 + x^1 + 1)</td>
<td>(x^3 + x^2 + x + 1)</td>
</tr>
</tbody>
</table>

Lc = 7
Lc = 4

Four-Stage Modified ALFSR

- de Bruijn Counter
- Period = 16
N-Stage Modified ALFSR

- (de Bruijn Counter): Period = 2^N

Minimized Four-Stage Modified ALFSR
Test Architecture

- m-stage ALFSR generates L m-bit patterns
 - L is test length
 - $M = 2^m - 1$ is number of patterns generated
- n is number of inputs for network under test (NUT)
 - $N = 2^n$ is exhaustive test length for NUT
 - Patterns generated on same chip or board
 - as device under test