VLSI Chip Yield

- A manufacturing defect is a finite chip area with electrically malfunctioning circuitry caused by errors in the fabrication process.
- A chip with no manufacturing defect is called a good chip.
- Fraction (or percentage) of good chips produced in a manufacturing process is called the yield. Yield is denoted by symbol Y.
- Cost of a chip:

 \[
 \text{Cost of fabricating and testing a wafer} = \frac{\text{Cost of fabricating and testing a wafer}}{Y \times \text{Number of chip sites on the wafer}}
 \]
Definitions

- **Quality Level, QL**
 - Fraction of Parts Passing Test that are Good

- **Defect Level, DL = 1 - QL**
 - Fraction of Parts Passing Test that are Good BAD
 - Measured in DPM, Defects per Million
 - Typical Claim is Less than 200 DPM (0.02%)

- **Yield, Y**
 - Fraction of Manufactured Parts that are Good
 - Typically 10 to 90%

- **Reject Ratio**
 - Fraction of Manufactured Parts that Fail Test
 - Used to Estimate Yield

Determination of DL

- **From field return data:**
 - Chips failing in the field are returned to the manufacturer.
 - The number of returned chips normalized to one million chips shipped is the **DL**.

- **From test data:**
 - Fault coverage of tests and chip fallout rate are analyzed.
 - A modified yield model is fitted to the fallout data to estimate the **DL**.
Test Thoroughness

- Measured by
 - Test transparency, TT
 - Fraction of Defects NOT Detected by Test
 - Estimated by FAULTS Missed by Test
 - Faults are Logical Models of Defects
 - Required Test Transparency
 - Depends on Yield and Acceptable Quality Level

Estimating Board Quality Level

- N Components per Board
- Component Defects are Identical and Independent
- Each Component has Probability, q, of being Defective
- Probability that Board has no Defective Component is:
 - \(P = (1 - q)^N \)

<table>
<thead>
<tr>
<th>N</th>
<th>DL</th>
<th>q</th>
<th>P %</th>
<th>1-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>10,000 DPM</td>
<td>10^{-2} or 1 %</td>
<td>66.9</td>
<td>33.1</td>
</tr>
<tr>
<td>40</td>
<td>10,000 DPM</td>
<td>10^{-2} or 1 %</td>
<td>13.4</td>
<td>86.6</td>
</tr>
<tr>
<td>40</td>
<td>1000 DPM</td>
<td>10^{-3} or 0.1 %</td>
<td>96</td>
<td>4</td>
</tr>
<tr>
<td>40</td>
<td>1000 DPM</td>
<td>10^{-3} or 0.1 %</td>
<td>82</td>
<td>18</td>
</tr>
<tr>
<td>40</td>
<td>100 DPM</td>
<td>10^{-4} or 0.01 %</td>
<td>99.6</td>
<td>0.4</td>
</tr>
<tr>
<td>40</td>
<td>100 DPM</td>
<td>10^{-4} or 0.01 %</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>200</td>
<td>10,000 DPM</td>
<td>10^{-2} or 1 %</td>
<td>66.9</td>
<td>33.1</td>
</tr>
<tr>
<td>200</td>
<td>10,000 DPM</td>
<td>10^{-2} or 1 %</td>
<td>13.4</td>
<td>86.6</td>
</tr>
<tr>
<td>200</td>
<td>1000 DPM</td>
<td>10^{-3} or 0.1 %</td>
<td>96</td>
<td>4</td>
</tr>
<tr>
<td>200</td>
<td>1000 DPM</td>
<td>10^{-3} or 0.1 %</td>
<td>82</td>
<td>18</td>
</tr>
<tr>
<td>200</td>
<td>100 DPM</td>
<td>10^{-4} or 0.01 %</td>
<td>99.6</td>
<td>0.4</td>
</tr>
<tr>
<td>200</td>
<td>100 DPM</td>
<td>10^{-4} or 0.01 %</td>
<td>98</td>
<td>2</td>
</tr>
</tbody>
</table>
Wafer Sort (Wafer Probe, Probe Test)

<table>
<thead>
<tr>
<th></th>
<th>Yield</th>
<th>Gross Yield</th>
<th>Boolean Yield</th>
<th>Parametric Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wafer</td>
<td>Y_D,</td>
<td>Y_G,</td>
<td>Y_B,</td>
<td>Y_P,</td>
</tr>
<tr>
<td>Sort</td>
<td>Yield</td>
<td>Gross Yield</td>
<td>Boolean Yield</td>
<td>Parametric Yield</td>
</tr>
<tr>
<td></td>
<td>Y_D,</td>
<td>Y_G,</td>
<td>Y_B,</td>
<td>Y_P,</td>
</tr>
</tbody>
</table>

- Y, Yield = Fraction of die passing test
- Y_D = Die Yield
- Y_G = Gross Yield
- Y_B = Boolean Yield
- Y_P = Parametric Yield

Wafer Sort

- **Gross Test**
 - Test for Gross Defects - Idd, Pin Leakage, ...

- **Parametric Test**
 - Measure analog parameters of device
 - DC - Voltage levels, drive current, power, ...
 - AC - Rise, fall, delay times

- **Boolean Test**
 - Digital test of Logic Operation
 - Called Functional Test by Chip Testers
 - Based on Fault Model
Wafer Sort Definitions

- Die yield, Y_D,
 - Fraction of Die that are defect-free
 - *Estimated* by Fraction of Die that pass Wafer Sort

- Boolean (functional) defect
 - Defect that Changes Function Realized by Die

- Boolean (functional) Yield, Y_B,
 - Fraction of Die that are free of Boolean defects
 - *Estimated* by Fraction of Die that Pass Boolean Test

- Boolean (functional) test
 - Test for Boolean (functional) Defects

Motorola6802 Wafer Sort Experiment

- Single Stuck-Fault Coverage = 99.9%
- $Y_B = \frac{12}{18.5} = 65.167\%$
- $Y_G = \frac{18.5}{22.5} = 82.2\%$
- $Y_P = \frac{7}{12.00} = 58\%$
What If

- Single stuck-fault coverage were 96.6%?
 - Theory Predicts:
 - DL = 14,454 DPM or 174 Bad Die Pass Boolean Test
 - Experiment shows:
 - DL = 8,471 DPM or 103 Bad Die Pass Boolean Test

Quality Level Dependence On Y & TT

- Theorem:
 - The Boolean Quality Level achieved by a test with
 Boolean Test Transparency, TT, for a process of Boolean
 Yield, Y, is given by:
 - $QL = Y^{TT}$

- Corollary:
 - For Tests that Result in Defect Levels, DL, less than 1000
 DPM this can be simplified to:
 - $DL = (-\ln Y) \cdot TT$
 - And further simplified for $Y \geq 90\%$ to:
 - $DL = (1 - Y) \cdot TT$
Derivation Of Theorem (1)

- **n** Possible Point Defects on Chip
- **Assumption:** defects are independent and equally distributed
- **m** of the **n** Defects Detected by Test Set, \((n - m)\) Not Detected
- TT is \(\frac{n - m}{n} = 1 - \frac{m}{n}\)
- **p** is Probability of a Defect Occurring
- **A** is Event that Die has no Defects
 - Yield \(Y = P[A] = (1 - p)^n\)
- **B** is event that die passes test, none of the m defects on die
 - \(P[B] = (1 - p)^m\)
 - if a chip is free of defects, it is free of m tested defects
 - \(P[AB] = P[A] = (1 - p)^n\)
Derivation Of Theorem (2)

- **QL** is given by the probability that a chip is free of all *n* defects when it is known that it is free of any of the *m* defects detected by the test process.
- **QL** = \(\frac{\text{Number of defect-free parts that pass the test}}{\text{Total number of parts that pass the test}} \)

\[
QL = P[A|B] = \frac{P[AB]}{P[B]} = \frac{P[A]}{P[B]} = (1 - p)(n - m) = (1 - p)n(1 - m/n) = Y^{TT}
\]

Simplifications (1)

- **DL** less than 1,000 DPM
 - \(DL < 10^{-3} \Rightarrow QL = 1 - DL = Y^{TT} > 0.999 \)
 - \(|TT \ln Y| < | \ln (0.999) | = 10^{-3} \)
 - Series expansion of **QL** = \(Y^{TT} \)
 - **QL** = \(Y^{TT} = 1 + TT \ln Y + (TT \ln Y)^2 / 2 + (TT \ln Y)^3 / 3! + ... \)
 - Since \(|TT \ln Y| < 10^{-3} \)
 - \(|(TT \ln Y)^2 / 2 + (TT \ln Y)^3 / 3! + ...| < 10^{-6} \)
 - **QL** \(\approx 1 + TT \ln Y \)
 - **DL** \(\approx TT (- \ln Y) \)
 - **TT** \(\approx -DL/(\ln Y) \)
Simplifications (2)

- DL less than 1,000 DPM and Y = 90 %
 - \(\ln Y = (Y - 1) - (Y - 1)^2 / 2 + (Y - 1)^3 / 3 - \ldots \)
 - \(-\ln Y = (1 - Y) + (1 - Y)^2 / 2 + (1 - Y)^3 / 3 + \ldots \)
- \(Y = 90 \% \Rightarrow \)
 - \(1 - Y < 0.1 \) and
 - \(|1 / 2 (1 - Y)^2 + 1 / 3 (1 - Y)^3 - \ldots| < 10^{-2} \)

\(DL \approx TT \ (-\ln Y) \approx TT \ (1 - Y) \)

Example

- Required TT and coverage \((C) \) for DL=200 DPM

<table>
<thead>
<tr>
<th>Y%</th>
<th>10</th>
<th>50</th>
<th>75</th>
<th>90</th>
<th>95</th>
<th>99</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ln Y</td>
<td>2.3</td>
<td>0.69</td>
<td>0.288</td>
<td>0.105</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>1/(-ln Y)</td>
<td>0.434</td>
<td>1.44</td>
<td>3.48</td>
<td>9.49</td>
<td>19.5</td>
<td>99.5</td>
</tr>
<tr>
<td>TT%</td>
<td>0.008</td>
<td>0.03</td>
<td>0.07</td>
<td>0.2</td>
<td>0.4</td>
<td>2</td>
</tr>
<tr>
<td>C%</td>
<td>99.992</td>
<td>99.97</td>
<td>99.93</td>
<td>99.8</td>
<td>99.6</td>
<td>98</td>
</tr>
</tbody>
</table>
Clustered Defects

- Clustering which happens in reality gives higher yield

Clustering VLSI Defects

- Good chips
- Faulty chips
- Defects
- Wafer

Unclustered defects
Wafer yield = 12/22 = 0.55

Clustered defects (VLSI)
Wafer yield = 17/22 = 0.77
Clustering Effect

Cluster THEOREM:
- The Boolean Quality Level achieved by a test with Fault Coverage C, for a process of Boolean Yield, Y

\[QL = \frac{(1 - C)(1 - Y)e^{(n - 1)C}}{Y + (1 - C)(1 - Y)e^{(n - 1)C}} \]

- where \(n \) is average number of faults on a faulty die

What If (Motorola6802 Experiment)

- Single stuck-fault coverage were 96.6 % ?
 - Uniform Theory Predicts:
 - DL = 14,454 DPM or 174 Bad Die Pass Boolean Test
 - Cluster Theory with \(n=1 \) Predicts:
 - DL = 17,849 DPM or 217 Bad Die Pass Boolean Test
 - Cluster Theory with \(n=2 \) Predicts:
 - DL = 6,869 DPM or 84 Bad Die Pass Boolean Test
 - Experiment shows:
 - DL = 8,471 DPM or 103 Bad Die Pass Boolean Test
Yield Parameters

- Defect density \((d) \)
 - Average number of defects per unit of chip area
- Chip area \((A) \)
- Clustering parameter \((\alpha) \)
- Negative binomial distribution of defects,
 \[
 p(x) = \text{Prob (number of defects on a chip } = x) \]
 \[
 = \frac{\Gamma(\alpha+x)}{x! \Gamma(\alpha)} \left(\frac{Ad}{\alpha} \right)^x (1+Ad/\alpha)^{\alpha+x}
 \]
 where \(\Gamma \) is the gamma function
 \(\alpha = 0, p(x) \) is a delta function (max. clustering)
 \(\alpha = \infty, p(x) \) is Poisson distr. (no clustering)

Yield Equation

\[
Y = \text{Prob (zero defect on a chip) } = p(0)
\]

\[
Y = \left(1 + \frac{Ad}{\alpha} \right)^{-\alpha}
\]

Example: \(Ad = 1.0, \alpha = 0.5, Y = 0.58 \)

Unclustered defects: \(\alpha = \infty, Y = e^{-Ad} \)

Example: \(Ad = 1.0, \alpha = \infty, Y = 0.37 \)

too pessimistic!
Modified Yield Equation

- Three parameters:
 - Fault density, f
 - Average number of stuck-at faults per unit chip area
 - Fault clustering parameter, β
 - Stuck-at fault coverage, T

- The modified yield equation:

$$ Y(T) = (1 + TAf / \beta)^{-\beta} $$

Assuming that tests with 100% fault coverage ($T = 1.0$) remove all faulty chips,

$$ Y = Y(1) = (1 + Af / \beta)^{-\beta} $$

Defect Level

$$ DL(T) = \frac{Y(T) - Y(1)}{Y(T)} $$

$$ DL(T) = 1 - \frac{(\beta + TAf)^{\beta}}{(\beta + Af)^{\beta}} $$

- T is the fault coverage of tests,
- Af is the average number of faults on the chip of area A
- β is the fault clustering parameter
- Af and β are determined by test data analysis.
Summary

- VLSI yield depends on two process parameters,
 - Defect density (d)
 - Clustering parameter (α)
- Yield drops as chip area increases
 - Low yield means high cost
- Fault coverage measures the test quality
- Defect level (DL) or reject ratio is a measure of chip quality
- DL can be determined by an analysis of test data
- For high quality: DL < 500 DPM,
 - Fault coverage should be ~ 99%