Today’s Lecture

- Codes for storage and communication
 - Cyclic codes
 - Reed-Solomon codes
- Arithmetic codes
- Self-checking logic
Codes for Storage and Communication

- Cyclic codes are parity check codes with additional property that cyclic shift of codeword is also a codeword
 - if \((C_{n-1}, C_{n-2}, ..., C_1, C_0)\) is a codeword, \((C_{n-2}, C_{n-3}, ..., C_0, C_{n-1})\) is also a codeword
- Cyclic codes are used in
 - sequential storage devices, e.g. tapes, disks, and data links
 - communication applications
- An \((n,k)\) cyclic code can detect single bit errors, multiple adjacent bit errors affecting fewer than \((n-k)\) bits, and burst transient errors
- Cyclic codes require less hardware, in form of linear feedback shift registers
 - parity check codes require complex encoding, decoding circuit using arrays of EX-OR gates, AND gates, etc.

Cyclic Code and Polynomials

- Cyclic codes depend on the representation of data by a polynomial
- If \((C_{n-1}, C_{n-2}, ..., C_1, C_0)\) is a codeword, its polynomial representation is \(C(x) = C_{n-1}x^{n-1} + C_{n-2}x^{n-2} + ... + C_1x + C_0\)
- Cyclic codes are characterized by their generator polynomial \(g(x)\)
- \(g(x)\) is a polynomial of degree \((n-k)\) for an \((n,k)\) code, with a unity coefficient in \((n-k)\) term
- \(g(x)\) is a factor of \(x^n-1\), i.e., it divides it with zero remainder
 - if a polynomial with degree \(n-k\) divides \(x^n-1\), then \(g(x)\) generates a cyclic code
- Example: for \((7,4)\) code, \(g(x) = x^3 + x + 1\)
Cyclic Redundancy Check (CRC)

- Considers dataword and codeword to be polynomials
 - E.g., $i_0, i_1, i_2, \ldots, i_{n-1} \rightarrow i_0 + i_1X + i_2X^2 + \ldots + i_{n-1}X^{n-1}$
- Codeword = Dataword * Generator
 - $C(X) = D(X) * g(X)$
 - $g(X)$ is pre-defined CRC polynomial
 - depends on particular code
 - Additions performed during multiplication are mod2
 - $0+0 = 0$, $0+1 = 1+0 = 1$, $1+1 = 0$
- At receiver, divide n-bit codeword by CRC polynomial
 - $D(X) = C(X) / g(X)$
 - If remainder is non-zero, we’ve detected an error

Basic Operations on Polynomials

- Can multiply or divide one polynomial by another, follow modulo 2 arithmetic, coefficients are 1 or 0, and addition and subtraction are same

Multiplication

$$(x^4 + x^3 + x^2 + 1)(x^3 + x)$$

$$x^7 + x^6 + x^5 + x^3$$

Division

$$x^4 + x^2 + 1$$

$$(x^5 + x^4 + x^3 + x)$$

$$x^7 + x^6 + x^4 + x^3 + x$$

$$x^2 + x$$

Remainder
Cyclic Code - Example

- Consider generator polynomial \(g(x) = x^3 + x + 1 \) for (7,4) code
- Can verify \(g(x) \) divides \(x^7 - 1 \)
- Given data word \((1111)\), generate codeword
 - \(d(x) = x^3 + x^2 + x + 1 \)
 - Then \(c(x) = g(x)d(x) = (x^3 + x^2 + x + 1)(x^3 + x + 1) \)
 - \(= x^6 + x^5 + x^3 + 1 \)
- Hence code word is \((1101001)\)

CRC Properties and Varieties

- An n-bit CRC check can detect all errors of less than n bits and all but 1 in \(2^n \) multi-bit errors
- Examples:
 - CRC-12: \(g(X) = X^{12} + X^{11} + X^3 + X^2 + X + 1 \)
 - CRC-16: \(g(X) = X^{16} + X^{15} + X^2 + 1 \)
- Ethernet uses CRC-32
 - More bits → better error detection capability
Circuit to Generate Cyclic Code

- Consider blocks labeled X as multipliers, and addition elements as modulo 2

\[g(x) = x^3 + x + 1 \]

- Another representation is to replace multipliers by storage elements, adders by EX-OR gates

Generation of Code Words

<table>
<thead>
<tr>
<th>Information (d_{1b}, d_{1a}, d_{2b}, d_{2a})</th>
<th>Code (V_{b}, V_{a}, V_{p}, V_{e}, V_{y}, V_{d})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>00000000</td>
</tr>
<tr>
<td>0001</td>
<td>00011010</td>
</tr>
<tr>
<td>0010</td>
<td>0011010</td>
</tr>
<tr>
<td>0011</td>
<td>00101111</td>
</tr>
<tr>
<td>0100</td>
<td>0110100</td>
</tr>
<tr>
<td>0101</td>
<td>0111001</td>
</tr>
<tr>
<td>0110</td>
<td>0101111</td>
</tr>
<tr>
<td>0111</td>
<td>010011</td>
</tr>
<tr>
<td>1000</td>
<td>1101000</td>
</tr>
<tr>
<td>1001</td>
<td>1100101</td>
</tr>
<tr>
<td>1010</td>
<td>1110010</td>
</tr>
<tr>
<td>1011</td>
<td>1111111</td>
</tr>
<tr>
<td>1100</td>
<td>1011100</td>
</tr>
<tr>
<td>1101</td>
<td>1010001</td>
</tr>
<tr>
<td>1110</td>
<td>1001110</td>
</tr>
<tr>
<td>1111</td>
<td>1000111</td>
</tr>
</tbody>
</table>

Data polynomial = \(d_1 \cdot x^3 + d_3 \cdot x + d_6 \cdot x^4 \)

Generator polynomial = \(1 - x - x^2 \)

Code polynomial = \(v_1 = v_2 = v_3 = v_4 = v_5 = v_6 \)

\[v_4 = v_5 + v_6 \]

(c) 2019, Mehdi Tahoori
Decoding of Cyclic Codes

- Determine if code word \((r_{n-1}, r_{n-2}, \ldots, r_1, r_0)\) is valid
- Code polynomial \(r(x) = r_{n-1}x^{n-1} + r_{n-2}x^{n-2} + \ldots + r_1x + r_0\)
- If \(r(x)\) is a valid code polynomial, it should be a multiple generator polynomial \(g(x)\)
- \(r(x) = d(x)g(x) + s(x)\), where \(s(x)\) the syndrome polynomial should be zero
- Hence, divide \(r(x)\) by \(g(x)\) and check the remainder whether equal to 0

Circuits for Decoding

\[
\begin{align*}
 b(x) & = (x^3 + x) \cdot d(x) \\
 v(x) + b(x) & = d(x) \\
 v(x) & = (x^3 + x + 1) \cdot d(x)
\end{align*}
\]

Hence, \(d(x) = v(x) / (x^3 + x + 1)\)

Another representation is to replace multipliers by storage elements and adders by EX-OR gates

Note: Once the division is completed, the registers contain the value of the syndrome (remainder)
Reliable Computing I – Lecture 7

Example Decoding

Systematic Cyclic Codes

- Previous cyclic codes were not systematic, i.e. data not part of code word
- To generate \((n,k)\) systematic cyclic code, do the following:
 - Multiply \(d(x)\) by \(x^{n-k}\), this is accomplished by shifting \(d(x)\) \(n-k\) bits
 - The code polynomial is \(c(x) = r(x) + x^{n-k} d(x)\)
 - Hence \(x^{n-k} d(x) + r(x) = g(x)q(x)\), which is code word \(c(x)\) since it is a multiple of \(g(x)\)
Example of Systematic Cyclic Code

- Generator polynomial \(g(x) = x^4 + x^3 + x^2 + 1 \) of (7,3) code
- Data is 3 bits, \(n-k = 4 \) bits

<table>
<thead>
<tr>
<th>Message Bit</th>
<th>(x^M(x))</th>
<th>(C(x) = \text{Rem}(x^M(x) - G(x)))</th>
<th>Code Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
<td>0</td>
<td>0000000</td>
</tr>
<tr>
<td>001</td>
<td>(x^4)</td>
<td>(x^3 + x^2 + 1)</td>
<td>0011101</td>
</tr>
<tr>
<td>010</td>
<td>(x^5)</td>
<td>(x^2 + x + 1)</td>
<td>0100111</td>
</tr>
<tr>
<td>011</td>
<td>(x^3 + x^4)</td>
<td>(x^2 + x)</td>
<td>0111010</td>
</tr>
<tr>
<td>100</td>
<td>(x^6)</td>
<td>(x^2 + x^2 + x)</td>
<td>1001110</td>
</tr>
<tr>
<td>101</td>
<td>(x^4 + x^5)</td>
<td>(x^2 + x + 1)</td>
<td>1010011</td>
</tr>
<tr>
<td>110</td>
<td>(x^6 + x^5)</td>
<td>(x^2 + 1)</td>
<td>1101001</td>
</tr>
<tr>
<td>111</td>
<td>(x^4 + x^2 + x^4)</td>
<td>(x^2)</td>
<td>1110100</td>
</tr>
</tbody>
</table>

Reed-Solomon Codes

- Popular ECC for CDs, DVDs, wireless communications, etc.
- \(k \) data symbols, each of which is \(s \) bits
- \(r \) parity symbols, each of which is also \(s \) bits
- Can correct up to \(r/2 \) symbols that contain errors
 - Or can correct up to \(r \) symbol erasures
 - Erasure = error in a known symbol
- Denoted by RS(\(n,k \))
- Common example: RS(255, 223) with \(s=8 \)
 - \(n = 255 \) → 255 codeword bytes
 - \(k = 223 \) → 223 dataword bytes
 - \(r = 32 \) → can correct errors in ≤ 16 bytes
Reed-Solomon Codes

- There exist many flavors of RS codes, each of which is tailored to specific purpose
 - Cross-Interleaved Reed-Solomon Coding (CIRC) used in CDs can correct error burst of up to 4000 bits!
 - 4000 bits is roughly equivalent to 2.5mm on the CD surface
- RS codes are best for bursty error model
 - Just as good at handling 1 error in symbol or s errors in symbol
- Codewords created by multiplying datawords with generator polynomial (like CRC)

Checksum Codes - Basic Concepts

- The checksum is appended to block data when such blocks are transferred

\[\text{Checksum on Original Data} \]

\[d_1, d_2, d_3, ... \]

\[\text{Checksum on Received Data} \]

\[r_1, r_2, r_3, ... \]

\[r_1 = \text{received word of data} \]

\[d_1 = \text{original word of data} \]
Single Precision Checksums

A single-precision checksum is formed by adding the data words and ignoring any overflow.

The single-precision checksum is unable to detect certain types of errors. The received checksum and the checksum of the received data are equal, so no error is detected.

Double Precision Checksums

- Compute 2n-bit checksum for a block of n-bit words
- Overflow is still a concern, but it is now overflow from a 2n-bits

The received checksum and the checksum of the received data are not equal, so the error is detected.
Honeywell Checksums

- Concatenate consecutive words to form double words to create k/2 words of 2n bits; checksum formed over newly structured data

Residue Checksums

- The same concept as the single-precision checksum except that the carry bit is not ignored and is added to checksum in an end-around carry fashion
Arithmetic Codes

- Useful to check arithmetic operations
- Parity codes are not preserved under addition, subtraction
- Arithmetic codes can be
 - Separate: check symbols disjoint from data symbols
 - Non-separate: combined check and data
- Several Arithmetic codes
 - AN codes, Residue codes, Bi-residue codes
- Arithmetic codes have been used in STAR fault tolerant computer for space applications

AN codes

- Data X is multiplied by check base A to form A.X
- Addition of code words performed modulo M where A divides M
- \(A(X +_M Y) = AX +_M AY \)
- Check operation by dividing the result by A
- If result = 0, no error, else error
Example of 3N Code

<table>
<thead>
<tr>
<th>Original Information</th>
<th>3N code word</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>00000000</td>
</tr>
<tr>
<td>000100</td>
<td>00000011</td>
</tr>
<tr>
<td>001000</td>
<td>00010001</td>
</tr>
<tr>
<td>010000</td>
<td>00100001</td>
</tr>
<tr>
<td>010100</td>
<td>00111111</td>
</tr>
<tr>
<td>011010</td>
<td>01001001</td>
</tr>
<tr>
<td>011110</td>
<td>01100001</td>
</tr>
<tr>
<td>100001</td>
<td>10001101</td>
</tr>
<tr>
<td>100110</td>
<td>10011110</td>
</tr>
<tr>
<td>101101</td>
<td>10110001</td>
</tr>
<tr>
<td>111001</td>
<td>11101110</td>
</tr>
<tr>
<td>111111</td>
<td>11111110</td>
</tr>
</tbody>
</table>

Illustration of the error detection capabilities of the 3N arithmetic code. The presence of the fault results in the sum being an invalid 3N code.

Residue Codes

- **Separate code** \((X, X \mod A) \)
- **Created by appending the residue of a number to that number**

![Diagram of Residue Codes](image)
Berger Codes

- Used in Control units as systematic codes
- The k check bits are the binary encoding of the number of zeros in the d-bit dataword
 - Berger codes are formed by appending \(k = \lceil \log_2 (d+1) \rceil \) check bits and \(n = d + k \)
- Example:
 - \(X=10010001 \Rightarrow k = \lceil \log_2 (8+1) \rceil = 4 \)
 - the number of 1s in this data is 3 (0011)
 - the complement of (0011) is (1100)
 - the resulting code word is: 1001 0001 1100

Berger Codes

- Can detect all single-bit errors and all unidirectional multi-bit errors
 - Unidirectional: all bit errors are either from 0→1 or from 1→0
- Good for detecting coupling faults
 - Change in one bit erroneously causes change(s) in other bit(s)
 - Models short circuits (including bridging faults)
Self-Checking Circuits

- What properties/invariants can we build into circuits such that codeword inputs do not lead to codeword outputs in the presence of faults?

- **Self-testing circuit**
 - for every fault from a prescribed set there exists at least one valid input code word that will produce an invalid output code word when a single fault is present in the circuit

- **Fault secure circuit**
 - any single fault from a prescribed set results in the circuit either producing the correct code word or producing a non-code word, for any valid input code word

- **Totally self-checking circuit (TSC)**
 - the circuit is both fault secure and self-testing
 - all single faults are detectable by at least one valid code word input, and when a given input combination does not detect the fault, the output is the correct code word output

Circuit of Basic TSC Comparison Element

1. Dual-rail signal coded so two bits are complementary.
2. Comparison element checks for the equality of the two dual-rail signals at its inputs.
3. Outputs a dual-rail signal 01 or 10 if both inputs are equal and properly coded; otherwise, outputs 00 or 11.
Implementing EDC/ECC in Hardware

- Where does EDC/ECC get used?
 - Disk, CD-ROM
 - Memory (DRAM, SRAM)
 - Buses
 - Network

- Tradeoff between EDC and ECC
 - ECC: Forward error recovery
 - Often on critical path, so can slow down even fault-free system
 - EDC: Backward error recovery
 - Detecting error leads to recovery (can be slow)

- So would you use ECC or EDC in your L1 cache?
 - How about in DRAM?