Today’s Lecture

- Definition, metrics, and terminology

fault-tolerant

adj : able to function in the absence of a major component
Goals of Fault Tolerant Systems

- How can we deal with problems?
- Option 1: Make problems less likely
 - Tough to do!
 - Testing and design for test (DFT) can help avoid physical defects
 - Careful design reviews can help to avoid design bugs
 - Training and practice can help to avoid operator error
- Option 2: Fail, but don’t corrupt anything
 - Example: ATM should shut down instead of passing out money
- Option 3: Transparently tolerate problems
 - Use hardware and/or software to mask fault effects
 - Key: use redundancy (a.k.a. spares or backups)
 - Example: having a co-pilot on an airplane

Reliable Computing System

- Correct outputs
 - Desired performance, power consumption
- Changing/varying environmental conditions
 - Power supply, radiation, noise
- Manufacturing process conditions
 - Defects, process variation
- Design errors
Reliability approaches

- Fault avoidance: eliminate problem sources
 - Remove defects: Testing and debugging
 - Robust design: reduce probability of defects
 - Minimize environmental stress: Radiation shielding etc
 - Impossible to avoid faults completely
 - Occurrence of failures minimized
- Fault tolerance: add redundancy to mask effect
 - Failures during system operation
 - Recovery & repair
 - Examples:
 - Error correction coding
 - Backup storage
 - Spare tire

System View of Dependable Computing
How do We Achieve the Objectives?

- Applications
 - Application program interface (API)
 - Middleware
- SIFT
- Reliable communications
- Operating system
- Hardware
 - System network
 - Processing elements
 - Memory
 - Storage system

- Checkpointing and rollback, application replication, software voting (fault masking), process pairs, robust data structures, recovery blocks, N-version programming
- CRC on messages, acknowledgment, watchdogs, heartbeats, consistency protocols
- Memory management, detection of process failures, hooks to support software fault tolerance for application
- Error correcting codes, N_of_M and standby redundancy, voting, watchdog timers, reliable storage (RAID, mirrored disks)

Dependable Computing

- Original definition of dependability (that stresses the need for justification of trust) states that: the dependability is the ability to deliver service that can justifiably be trusted.
- The alternate definition (that provides the criterion for deciding if the service is dependable) states that: the dependability of a system is the ability to avoid service failures that are more frequent and more severe than is acceptable.

- Attributes
 - Availability: Readiness for correct service
 - Reliability: Continuity of correct service
 - Safety: Absence of catastrophic consequences
 - Confidentiality: Absence of unauthorized disclosure of data
 - Integrity: Absence of improper system alteration
 - Maintainability: Ability to undergo modifications and repairs

- Means
 - Fault prevention
 - Fault tolerance
 - Fault removal
 - Fault forecasting

- Threats
 - Faults
 - Errors
 - Failures
Dependable Systems

Intuitive Concepts

- Reliability – continues to work
- Availability – works when I need it
- Safety – does not put me in jeopardy
- Performability - combination of reliability & performance
 - “Graceful degradation”: loss of performance due to minor failures
- Maintainability - ease of repairing a system after failure
- Testability - ease of detecting presence of a fault
- **Survivability** – will the system survive catastrophic events?
Something is wrong…

- Defect
 - Distortion of the physical shape

- Fault
 - Logical model of defects

- Error
 - Incorrect signal values/state/information in computation

- Failure
 - Deviation from designed characteristics
 - Observed malfunction during operation
 - Loss of intended function

Latent fault: which has not yet produced error
- Faulty component will produce error only when used by a process.

Latent error: which has not yet produced failure.
- An infected person may not show symptoms of a disease.
Something is wrong…

- **Fault**: abstraction of physical defect or bug to structural level
- **Error**: effect of a physical defect, bug
- **Failure**: malfunction of the system, breakdown

What to do about faults?

- **Finding & identifying faults**:
 - **Fault detection**: is a fault there?
 - **Fault location**: where?
 - **Fault diagnosis**: which fault it is?

- **Automatic handling of faults**
 - **Fault containment**: blocking error flow
 - **Fault masking**: fault has no effect
 - **Fault recovery**: back to correct operation
System Response to Faults

- **Error on output**: may be acceptable in non-critical systems if happens only rarely
- **Fault masking**: output correct even when fault from a specific class occurs
 - Critical applications: air/space/manufacturing
- **Fault-secure**: output correct or error indication
 - Retryable: banking, telephony, payroll
- **Fail safe**: output correct or in safe state
 - Flashing red traffic light, disabled ATM

Fault Cycle & Dependability Measures

- **Reliability**: a measure of the continuous delivery of service; \(R(t) \) is the probability that the system survives (does not fail) throughout \([0, t]\); expected value: \(\text{MTTF} (\text{Mean Time To Failure}) \)
- **Maintainability**: a measure of the service interruption \(M(t) \) is the probability that the system will be repaired within a time less than \(t \); expected value: \(\text{MTTR} (\text{Mean Time To Repair}) \)
- **Availability**: a measure of the service delivery with respect to the alternation of the delivery and interruptions \(A(t) \) is the probability that the system delivers a proper (conforming to specification) service at a given time \(t \); expected value: \(E\{A\} = \text{MTTF} / (\text{MTTF} + \text{MTTR}) \)
- **Safety**: a measure of the time to catastrophic failure \(S(t) \) is the probability that no catastrophic failures occur during \([0, t]\); expected value: \(\text{MTTCF} (\text{Mean Time To Catastrophic Failure}) \)
Typical Recovery Latencies for a Hierarchical Fault Tolerant Design

First some probabilities...

- For each random variable X,
 - cumulative distribution function (CDF): \(F(x) = P(X \leq x) \)
 - Probability \(P \) that event \(X \) is less than or equal to value of \(x \)
 - Probability mass function (PMF): \(F(x) = P(X = x) \)
 - Probability density function (PDF): \(f(x) = \frac{dF}{dx} \)
 - Such that in general \(P(a \leq x \leq b) = \int_a^b f(x) \, dx \)
 - Mean or Expected value: \(E[X] = \int_{-\infty}^{+\infty} x f(x) \, dx \)
 - Variance: \(\sigma_X^2 = E[(x - E[X])^2] \)
Probability of Failure

- Random variable T is time to the next failure
- Lifetime of a module (time until it fails)
- $F(t) = \text{Prob} \{ T \leq t \}$
- Probability that component will fail before or at time t
- $f(t) = \frac{dF(t)}{dt}$, $\int_0^\infty f(t)dt = 1$, $f(t) \geq 0$ (for all $t \geq 0$)
- The momentary rate of probability of failure at time t
- F and f are related through:
 \[f(t) = \frac{dF(t)}{dt} \quad F(t) = \int_0^t f(s)ds \]

Reliability $R(t)$

- Probability that the system has been operating correctly and continuously from time 0 until time t, given that it was operating correctly at time 0
- $R(t) = \text{Prob} \{ T > t \} = 1 - F(t)$
- MTTF: Mean Time To Failure
- Expected value of the lifetime T
 \[MTTF = E[T] = \int_0^\infty t \cdot f(t)dt \]
- With $\frac{dR(t)}{dt} = -f(t)$, follows:
 \[MTTF = -\int_0^\infty \frac{dR(t)}{dt} \cdot dt = -tR(t) \bigg|_0^\infty + \int_0^\infty R(t)dt = \int_0^\infty R(t)dt \]
Failure Rate λ

- Number of failures per time unit w.r.t. number of surviving components
 - Also known as hazard function, $z(t)$
 - $\lambda(t) = z(t) = \frac{dF(t)}{dt} = \frac{f(t)}{1 - F(t)} = \frac{f(t)}{R(t)}$

- A module has a constant failure rate if and only if T has an exponential distribution

 $\begin{align*}
 R(t) &= e^{-\lambda t} ; F(t) = 1 - e^{-\lambda t} ; R(0) = 1 \\
 f(t) &= \lambda e^{-\lambda t}
 \end{align*}$

Failure Rate $\lambda(t) = \lambda$

- $MTTF = \int_0^\infty t \cdot e^{-\lambda t} dt = \int_0^\infty e^{-\lambda t} dt = \frac{1}{\lambda}$

- Reliability $R(t) = e^{-\lambda t}$
Availability

- **Availability A(t)**
 - Fraction of time system is operational during the interval \([0,t]\)
 - Excludes time for recovery or repair
- **MTTR: Mean Time To Repair**
- **MTBF: Mean Time Between Failures**
 - \(MTBF = MTTF + MTTR\)

\[
A = \frac{E[\text{Uptime}]}{E[\text{Uptime}] + E[\text{Downtime}]} = \frac{MTTF}{MTTF + MTTR} = \frac{MTTF}{MTBF}
\]

\(i_0\) \hspace{1cm} \(MTTF\) \hspace{1cm} \(MTBF\) \hspace{1cm} Time

Other failure distribution models

- **Weibull distribution**
 - \(\alpha\) : shape parameter
 - \(\alpha < 1\) : failure rate decreasing with time
 - \(\alpha = 1\) : failure rate constant
 - \(\alpha > 1\) : failure rate increasing with time
 - \(\lambda\) : scale parameter
 - PDF = \(f(t) = \alpha \lambda (\lambda t)^{\alpha-1} e^{-(\lambda t)\alpha}\)
 - CDF = \(F(t) = 1 - e^{-(\lambda t)\alpha}\)
 - Reliability = \(R(t) = e^{-(\lambda t)^\alpha}\)
Other failure distribution models

- Geometric distribution
 - Discrete times 0, 1, 2, …
 - Replacing $e^{-\lambda}$ by discrete probability q
 - Replacing t by n
 - PMF = $f(n) = q^n - q^{n+1} = q^n(1 - q)$
 - CDF = $F(n) = 1 - q^n$
 - Reliability = $R(n) = q^n$
 - $\mu = \frac{1}{1-q}$, $\sigma = \frac{q^{1/2}}{1-q}$
- Discrete Weibull distribution

Maintainability

- MTTR may be subdivided as follows
 - Time needed to detect a fault and isolate the responsible components (diagnosis)
 - Time needed to replace the faulty component
 - Time needed to verify that the fault has been removed and the system is fully operational
- Design for maintainability
 - System design which supports efficient fault detection, isolation and repair
Performability

- Accomplishment levels \(L_1, L_2, \ldots, L_n\) defined in the application context
 - Representing a level of quality of service delivered by the application
 - E.g.: \(L_i\) indicates \(i\) system crashes during mission time
- Performability is a vector \((P(L_1), P(L_2), \ldots, P(L_n))\)
 - \(P(L_i)\): Probability that the system performs well enough that the application reaches level \(L_i\)