Today’s Lecture

- Codes for storage and communication
 - Cyclic codes
 - Reed-Solomon codes
- Arithmetic codes
- Self-checking logic
Codes for Storage and Communication

- Cyclic codes are parity check codes with additional property that cyclic shift of codeword is also a codeword
 - if \((C_{n-1}, C_{n-2}, \ldots, C_1, C_0)\) is a codeword, \((C_{n-2}, C_{n-3}, \ldots, C_0, C_{n-1})\) is also a codeword
- Cyclic codes are used in
 - sequential storage devices, e.g. tapes, disks, and data links
 - communication applications
- An \((n,k)\) cyclic code can detect single bit errors, multiple adjacent bit errors affecting fewer than \((n-k)\) bits, and burst transient errors
- Cyclic codes require less hardware, in form of linear feedback shift registers
 - parity check codes require complex encoding, decoding circuit using arrays of EX-OR gates, AND gates, etc.

Cyclic Code and Polynomials

- Cyclic codes depend on the representation of data by a polynomial
- If \((C_{n-1}, C_{n-2}, \ldots, C_1, C_0)\) is a codeword, its polynomial representation is \(C(x) = C_{n-1}x^{n-1} + C_{n-2}x^{n-2} + \ldots + C_1x + C_0\)
- Cyclic codes are characterized by their generator polynomial \(g(x)\)
- \(g(x)\) is a polynomial of degree \((n-k)\) for an \((n,k)\) code, with a unity coefficient in \((n-k)\) term
- \(g(x)\) is a factor of \(x^{n-1}\), i.e., it divides it with zero remainder
 - if a polynomial with degree \(n-k\) divides \(x^{n-1}\), then \(g(x)\) generates a cyclic code
- Example: for \((7,4)\) code, \(g(x) = x^3 + x + 1\)
Cyclic Redundancy Check (CRC)

- Considers dataword and codeword to be polynomials
 - E.g., \(i_0, i_1, i_2, \ldots, i_{n-1} \rightarrow i_0 + i_1X + i_2X^2 + \ldots + i_{n-1}X^{n-1} \)
- Codeword = Dataword * Generator
 - \(C(X) = D(X) * g(X) \)
 - \(g(X) \) is pre-defined CRC polynomial
 - depends on particular code
 - Additions performed during multiplication are mod2
 - \(0+0 = 0, 0+1 = 1+0 = 1, 1+1 = 0 \)
- At receiver, divide n-bit codeword by CRC polynomial
 - \(D(X) = C(X) / g(X) \)
 - If remainder is non-zero, we’ve detected an error

Basic Operations on Polynomials

- Can multiply or divide one polynomial by another, follow modulo 2 arithmetic, coefficients are 1 or 0, and addition and subtraction are same

Multiplication

\[
(x^4 + x^3 + x^2 + 1)(x^3 + x) = x^7 + x^6 + x^5 + x^2 + x^5 x^4 + x^3 x = x^7 + x^6 + x^4 + x
\]

Division

\[
x^4 + x^3 + x^2 + 1 \quad \underline{x^5 + x^4} \quad x^2 + x^3 + x + x^3 + x \quad x^2 + x
\]

(c) 2018, Mehdi Tahoori
Cyclic Code - Example

- Consider generator polynomial \(g(x) = x^3 + x + 1 \) for \((7,4)\) code
- Can verify \(g(x) \) divides \(x^7 - 1 \)
- Given data word \((1111)\), generate codeword
 - \(d(x) = x^3 + x^2 + x + 1 \)
 - Then \(c(x) = g(x)d(x) = (x^3 + x^2 + x + 1) (x^3 + x + 1) \)
 \[= x^6 + x^5 + x^3 + 1 \]
- Hence code word is \((1101001)\)

CRC Properties and Varieties

- An \(n \)-bit CRC check can detect all errors of less than \(n \) bits and all but 1 in \(2^n \) multi-bit errors
- Examples:
 - CRC-12: \(g(X) = X^{12} + X^{11} + X^3 + X^2 + X + 1 \)
 - CRC-16: \(g(X) = X^{16} + X^{15} + X^2 + 1 \)
- Ethernet uses CRC-32
 - More bits \(\rightarrow \) better error detection capability
Circuit to Generate Cyclic Code

- Consider blocks labeled X as multipliers, and addition elements as modulo 2

\[g(x) = x^3 + x + 1 \]

- Another representation is to replace multipliers by storage elements, adders by EX-OR gates

Generation of Code Words

<table>
<thead>
<tr>
<th>Cyclic codes for 4-bit information words.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information</td>
</tr>
<tr>
<td>(d_0, d_1, d_2, d_3)</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>0000</td>
</tr>
<tr>
<td>0001</td>
</tr>
<tr>
<td>0010</td>
</tr>
<tr>
<td>0011</td>
</tr>
<tr>
<td>0100</td>
</tr>
<tr>
<td>0101</td>
</tr>
<tr>
<td>0110</td>
</tr>
<tr>
<td>0111</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>1001</td>
</tr>
<tr>
<td>1010</td>
</tr>
<tr>
<td>1011</td>
</tr>
<tr>
<td>1100</td>
</tr>
<tr>
<td>1101</td>
</tr>
<tr>
<td>1110</td>
</tr>
<tr>
<td>1111</td>
</tr>
</tbody>
</table>

Data polynomial = d_0 + d_3x + d_2x^2 + d_1x^3
Generator polynomial = 1 + x + x^2
Code polynomial = v_0 + v_3x + v_2x^2 + v_1x^3 + v_0x^4
= v_0x^6 + v_0x^6

The encoding process

<table>
<thead>
<tr>
<th>Clock period</th>
<th>Register values</th>
<th>D(x)</th>
<th>V(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 1 0 1 1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1 1 1 1 0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0 1 1 1 0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1 0 0 0 0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0 1 0 0 0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0 0 1 0 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0 0 0 0 1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

(c) 2018, Mehdi Tahoori
Decoding of Cyclic Codes

- Determine if code word \((r_{n-1}, r_{n-2}, \ldots, r_1, r_0)\) is valid
- Code polynomial \(r(x) = r_{n-1}x^{n-1} + r_{n-2}x^{n-2} + \ldots + r_1x + r_0\)
- If \(r(x)\) is a valid code polynomial, it should be a multiple generator polynomial \(g(x)\)
- \(r(x) = d(x)g(x) + s(x)\), where \(s(x)\) the syndrome polynomial should be zero
- Hence, divide \(r(x)\) by \(g(x)\) and check the remainder whether equal to 0

Circuits for Decoding

\[
\begin{align*}
 b(x) &= (x^3 + x) d(x) \\
 v(x) &= (x^3 + x + 1) d(x) \\
 v(x) + b(x) &= d(x)
\end{align*}
\]

Hence, \(d(x) = v(x) / (x^3 + x + 1)\)

\[
\begin{align*}
 v(x) &= d(x) - b(x) \\
 d(x) &= d(x) - (x^2 + x) d(x) = (x^3 + x + 1) d(x)
\end{align*}
\]

Another representation is to replace multipliers by storage elements and adders by EX-OR gates

Note: Once the division is completed, the registers contain the value of the syndrome (remainder)
Systematic Cyclic Codes

- Previous cyclic codes were not systematic, i.e. data not part of code word
- To generate (n,k) systematic cyclic code, do the following:
 - Multiply d(x) by x^{n-k}, this is accomplished by shifting d(x) n-k bits
 - The code polynomial is $c(x) = r(x) + x^{n-k} \cdot d(x)$
 - Hence $x^{n-k} \cdot d(x) + r(x) = g(x)q(x)$, which is code word c(x) since it is a multiple of g(x)
Example of Systematic Cyclic Code

- Generator polynomial \(g(x) = x^4 + x^3 + x^2 + 1 \) of (7,3) code
- Data is 3 bits, \(n-k = 4 \) bits

<table>
<thead>
<tr>
<th>Generator polynomial (g(x) = x^4 + x^3 + x^2 + 1) of (7,3) code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message Bits:</td>
</tr>
<tr>
<td>(m_2m_1m_0)</td>
</tr>
<tr>
<td>000</td>
</tr>
<tr>
<td>001</td>
</tr>
<tr>
<td>010</td>
</tr>
<tr>
<td>011</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>101</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>111</td>
</tr>
</tbody>
</table>

Reed-Solomon Codes

- Popular ECC for CDs, DVDs, wireless communications, etc.
- \(k \) data symbols, each of which is \(s \) bits
- \(r \) parity symbols, each of which is also \(s \) bits
- Can correct up to \(r/2 \) symbols that contain errors
 - Or can correct up to \(r \) symbol erasures
 - Erasure = error in a known symbol
- Denoted by RS\((n,k) \)
- Common example: RS\((255, 223) \) with \(s=8 \)
 - \(n = 255 \) → 255 codeword bytes
 - \(k = 223 \) → 223 dataword bytes
 - \(r = 32 \) → can correct errors in \(\leq 16 \) bytes
Reed-Solomon Codes,

- There exist many flavors of RS codes, each of which is tailored to specific purpose
 - Cross-Interleaved Reed-Solomon Coding (CIRC) used in CDs can correct error burst of up to 4000 bits!
 - 4000 bits is roughly equivalent to 2.5mm on the CD surface
- RS codes are best for bursty error model
 - Just as good at handling 1 error in symbol or s errors in symbol
- Codewords created by multiplying datawords with generator polynomial (like CRC)

Checksum Codes - Basic Concepts

- The checksum is appended to block data when such blocks are transferred

\[\begin{array}{c}
 d_0 \\
 d_1 \\
 d_2 \\
 d_3 \\
 d_4 \\
 d_5
\end{array} \]

Transfer

\[\begin{array}{c}
 r_0 \\
 r_1 \\
 r_2 \\
 r_3 \\
 r_4 \\
 r_5
\end{array} \]

Checksum on Original Data

\[d_i = \text{original word of data} \]

\[r_i = \text{received word of data} \]

Compare

Received Version of Checksum
Single Precision Checksums

A single-precision checksum is formed by adding the data words and ignoring any overflow.

Double Precision Checksums

- Compute 2n-bit checksum for a block of n-bit words
- Overflow is still a concern, but it is now overflow from a 2n-bits

The received checksum and the checksum of the received data are not equal, so the error is detected.
Honeywell Checksums

- Concatenate consecutive words to form double words to create \(k/2 \) words of \(2n \) bits; checksum formed over newly structured data

Residue Checksums

- The same concept as the single-precision checksum except that the carry bit is not ignored and is added to checksum in an end-around carry fashion
Arithmetic Codes

- Useful to check arithmetic operations
- Parity codes are not preserved under addition, subtraction
- Arithmetic codes can be
 - Separate: check symbols disjoint from data symbols
 - Non-separate: combined check and data
- Several Arithmetic codes
 - AN codes, Residue codes, Bi-residue codes
- Arithmetic codes have been used in STAR fault tolerant computer for space applications

AN codes

- Data X is multiplied by check base A to form A.X
- Addition of code words performed modulo M where A divides M
- \(A(X + M Y) = AX + M AY \)
- Check operation by dividing the result by A
- If result = 0, no error, else error
Example of 3N Code

<table>
<thead>
<tr>
<th>Original Information</th>
<th>3N code word</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0000000</td>
</tr>
<tr>
<td>0001</td>
<td>0000111</td>
</tr>
<tr>
<td>0010</td>
<td>0001001</td>
</tr>
<tr>
<td>0100</td>
<td>0011001</td>
</tr>
<tr>
<td>0101</td>
<td>0011111</td>
</tr>
<tr>
<td>0110</td>
<td>0100101</td>
</tr>
<tr>
<td>1000</td>
<td>1100000</td>
</tr>
<tr>
<td>1001</td>
<td>1100111</td>
</tr>
<tr>
<td>1010</td>
<td>1111011</td>
</tr>
<tr>
<td>1011</td>
<td>1000001</td>
</tr>
<tr>
<td>1100</td>
<td>1001010</td>
</tr>
<tr>
<td>1101</td>
<td>1010011</td>
</tr>
<tr>
<td>1110</td>
<td>1010110</td>
</tr>
<tr>
<td>1111</td>
<td>1011111</td>
</tr>
</tbody>
</table>

Illustration of the error detection capabilities of the 3N arithmetic code. The presence of the fault results in the sum being an invalid 3N code.

Residue Codes

- Separate code \((X, X \text{ Mod } A)\)
- Created by appending the residue of a number to that number
Berger Codes

- Used in Control units as systematic codes
- The k check bits are the binary encoding of the number of zeros in the d-bit dataword
 - Berger codes are formed by appending $k = \lceil \log_2 (d+1) \rceil$ check bits and $n = d + k$
- Example:
 - $X=1 0 0 1 0 0 0 1$ => $k = \lceil \log_2 (8+1) \rceil = 4$
 - the number of 1s in this data is 3 (0011)
 - the complement of (0011) is (1100)
 - the resulting code word is: 1001 0001 1100

Berger Codes

- Can detect all single-bit errors and all unidirectional multi-bit errors
 - Unidirectional: all bit errors are either from 0→1 or from 1→0
- Good for detecting coupling faults
 - Change in one bit erroneously causes change(s) in other bit(s)
 - Models short circuits (including bridging faults)
Self-Checking Circuits

- What properties/invariants can we build into circuits such that codeword inputs do not lead to codeword outputs in the presence of faults?

- **Self-testing circuit**
 - for every fault from a prescribed set there exists at least one valid input code word that will produce an invalid output code word when a single fault is present in the circuit

- **Fault secure circuit**
 - any single fault from a prescribed set results in the circuit either producing the correct code word or producing a non-code word, for any valid input code word

- **Totally self-checking circuit (TSC)**
 - the circuit is both fault secure and self-testing
 - all single faults are detectable by at least one valid code word input, and when a given input combination does not detect the fault, the output is the correct code word output

Circuit of Basic TSC Comparison Element

1. Dual-rail signal coded so two bits are complementary.
2. Comparison element checks for the equality of the two dual-rail signals at its inputs.
3. Outputs a dual-rail signal 01 or 10 if both inputs are equal and properly coded; otherwise, outputs 00 or 11.
Implementing EDC/ECC in Hardware

- Where does EDC/ECC get used?
 - Disk, CD-ROM
 - Memory (DRAM, SRAM)
 - Buses
 - Network

- Tradeoff between EDC and ECC
- ECC: Forward error recovery
 - Often on critical path, so can slow down even fault-free system
- EDC: Backward error recovery
 - Detecting error leads to recovery (can be slow)

- So would you use ECC or EDC in your L1 cache?
- How about in DRAM?