Lecture 9:
Boolean Testing Using Fault Models
(D-Algorithm, PODEM)

Instructor: M. Tahoori
Example: A/0

Step 1
- D-Drive: Set $A = 1$

Step 2
- D-Drive: Set $f = 0$
Example: A/0

Step 3
- D-Drive: Set \(k = 1 \)

Example: A/0

Step 4
- Consistency: Set \(g = 1 \)
Example: A/0

Step 5
- Consistency: f = 0
 - Already set

Example: A/0

Step 6
- Consistency: Set c = 0, Set e = 0
Example: A/0

- Step 7
 - Consistency: Set B = 0
 - Test found: ABCD = 100X

Example s/1

- Primitive D-cube of Failure
Example s/1

- Propagation D-cube for v

- Forward & Backward Implications
Example s/1

- Propagation D-cube for Z
- Test found!

Example: u/1

- Primitive D-cube of Failure
Example: u/1

- Propagation D-cube for v

- Forward and backward implications
Example: u/1

- Inconsistency
 - $d = 0$ and $m = 1$
 - cannot justify $r = 1$ (equivalence)
- Backtrack
 - Remove $B = 0$ assignment

Backtrack

- Need alternate propagation D-cube for v
Example: u/1

- Propagation D-cube for v

Example: u/1

- Propagation D-cube for Z
Example: u/1

- Propagation D-cube for Z
- Implications
- Test Found!

PODEM
Motivation

- IBM introduced semiconductor DRAM memory into its mainframes – late 1970’s
- Memory had error correction and translation circuits
 - To improved reliability
- D-ALG failed to generate test for these circuits
 - Search too undirected
 - Large XOR-gate trees
 - Must set all external inputs to define output
- Needed a better ATPG tool

PODEM -- Goel IBM (1981)

- Path Oriented DECision Making
- New concepts introduced:
 - Expand binary decision tree only around primary inputs
 - This reduced size of tree from 2^n to $2^{\text{num.PI}}$
 - Use X-PATH-CHECK
 - To test whether D-frontier still there
 - D-Algorithm tends to continue intersecting D-Cubes
 - Even when D-Frontier disappeared
 - Objectives
 - bring ATPG closer to propagating D (D̅) to PO
 - Backtracing
 - To obtain a PI assignment given an initial objective
Assigning Input Values (PODEM)

1. Assign value to an unassigned primary input
2. Determine all implications of assignment
3. If test is generated, exit; else
4. Is test possible with additional input assignments?
 - fault site doesn't have fault value assigned
 - Path of unassigned leads from D (D̅) to an output
 - If yes, go to 1, if no
5. Change input assignments to untried combination, go to 2
 - If no untried combination exists — untestable fault

Example: Test For k/1

- Put D' on k
 - D-Alg: assigned a D' to k and propagate it to output f
 - PODEM: try to justify 0 on k
Example: Test For $k/1$

- Justify 0 on d
- Implication

Diagram:

Example: Test For $k/1$

- K still hasn’t D'
- Justify 0 on c
- Implication: $k=h=m=D'$
Example: Test For k/1

- Propagate through w
- Set $g = 1$
- Implication

Example: Test For k/1

- Conflict
 - f is 1 so propagation is blocked
- Reverse the last assignment made to a PI
 - Set $b = 0$
- Implication
Example: Test For k/1

- There is a propagation path from m to f
 - Set p = 1

- Implication

- Test found
 - abcd = 0001

Another Example
Example: S/1

- Select path s – Y for fault propagation

Example: S/1

- Initial objective:
 - Set r to 1 to sensitize fault
Example: S/1

- Backtrace from r

\[\text{Set } A = 0 \text{ in implication stack} \]
Example: S/1

- Forward implications: \(d = 0, X = 1 \)

Example: S/1

- Initial objective: set \(r \) to 1
Example: S/1

- Backtrace from r again

Example: S/1

- Set B to 1.
 - Implications in stack: $A = 0, B = 1$
Example: S/1

- Forward implications:
 - $k = 1, m = 0, r = 1, q = 1, Y = 1, s = \overline{D}, u = \overline{D}, v = \overline{D}, Z = 1$

```
0 0 0 0 1 1 1 1
A B C D E F G H
```

Example: S/1

- X-PATH-CHECK
 - paths $s \rightarrow Y$ and $s \rightarrow u \rightarrow v \rightarrow Z$ blocked

```
0 0 0 0 1 1 1 1
A B C D E F G H
```
Example: S/1

- Set B = 0 (alternate assignment)

Forward implications:
- d = 0, X = 1, m = 1, r = 0, s = 1, q = 0, Y = 1, v = 0, Z = 1
- Fault not sensitized
Example: S/1

Set $A = 1$ (alternate assignment)

Backtrace from r again
Example: S/1

- Set $B = 0$.
- Implications in stack: $A = 1$, $B = 0$

![Diagram showing the implications in the circuit]

Example: S/1

- Forward implications:
 - $d = 0$, $X = 1$, $m = 1$, $r = 0$.
- Conflict: fault not sensitized. Backtrack

![Diagram showing the forward implications and conflict]

Copyright 2019, M. Tahoori
Example: S/1

- Set $B = 1$ (alternative assignment)

- Forward implications:
 - $d = 1$, $m = 1$, $r = 1$, $q = 0$, $s = \overline{D}$, $v = \overline{D}$, $X = 0$, $Y = \overline{D}$
 - Test found
PODEM

Major aspects
- Which primary input should be assigned a logic value?
- What value to assign to the selected primary input?
- Determining inconsistencies in primary input assignments
- Handling inconsistencies

Which PI to Choose?
- Decision gate
 - Logic value at the output of a gate is such that only one input of the gate can control its output to the desired value
 - AND with output 0
- Imply gate
 - Logic value at the output of a gate is such that all inputs of the gate must be at a particular value in order to control its output to the desired value
 - AND with output 1
- To justify a logic value at the output of a decision gate, choose the "easiest" input.
 - The shortest logical path to primary inputs or has the best controllability
- To justify a logic value at the output of an imply gate, choose the "hardest" input
 - The longest logical path to primary inputs or has the worst controllability
What Value to Assign?

- Path from the objective site to the selected primary input has an **even** number of inversions
 - Assign the **same** value to PI as the objective
- Path from the objective site to the selected primary input has an **odd** number of inversions
 - Assign the **opposite** value of the objective to PI

Inconsistencies in PI Assignment

- After every primary input assignment, an implication step is performed.
- During implication, inconsistencies in primary input assignments are detected using the following rules:
 - If there are conflicting assignments at the same signal line of the network
 - If the logic value at the fault site doesn’t activate the fault
 - If there is no path from the fault site to a primary output such that all side inputs of that path are either X or set at non-controlling values
Handling Inconsistencies

- **Backtracking**
 - Flip the logic value at the primary input
 - Which was the last one to be assigned a value
 - Stack of primary inputs that have been assigned values
 - After flipping implication step is performed
 - No inconsistency detected
 - Continue
 - Otherwise
 - That primary input is removed from the stack and
 - X is assigned to that primary input
 - POP the next assigned PI from stack and repeat