Sequential Circuits

- **Approach**
 - Convert Finite State Machine to Corresponding Iterative Network
 - Multiple Time Frames (Iterative Cells) Needed for
 - Justification and Propagation
 - One Fault in Sequential Circuit
 - Many Faults in Corresponding Iterative Network
 - Use 9-valued signals

- **Issues**
 - Order of Justification and Propagation
 - Simulation Values
 - Test Point Insertion (Partial Scan)
Sequential ATPG

- Difficulties
 - Initialization of the bistables
 - Gated clocks
 - Circuits with multiple clock domains
 - Internally derived clocks, mixed data and clock signals
 - Asynchronous logic
 - Circuits with combinational feedback paths
 - Embedded counters
 - Embedded RAMs and ROMs

Finite State Machine

- Example: serial adder
 - \(S_i = a_i \oplus b_i \oplus c_{i-1} \)
 - \(C_i = a_i b_i + c_{i-1} (a_i + b_i) \)
Example

- Corresponding parallel binary adder circuit
- Iterative network of the previous circuit

General Case

- Huffman model of sequential circuit
 - with edge-triggered D-flip-flops
General Case

- Any sequential circuit with edge-triggered D-FF can be directly converted into an iterative network

\[
x_0 \rightarrow y_0 \rightarrow Z_0
\]
\[
x_1 \rightarrow y_1 \rightarrow Z_1
\]
\[
x_r \rightarrow y_r \rightarrow Z_r
\]

Iterative Logic Array Expansion

- To detect a fault, a sequence of vectors may be needed
Example

Test for P SA0
- Provoke Fault on P1: a1 = 0, b1 = 1
- Propagate Fault to S2:
 - C0 = 1
 - Need to consider last time frame: a0 = 1, b0 = 1, Cin = X
 - a2 = 0, b2 = 0

Example

Test for u SA1
- In time frame t
 - provoke fault: u = 0
 - propagate fault effect to Z (path E, H, Z): v = 1 and G = 1
 - Justify B = C = 1: y = 1 and w = 1
 - Requires G = 1 in the time frame t-1
 - for a don’t care value of y (i.e., y = 0 or 1) in the time frame t - 1
Example (cont)

- Test for u SA1
 - In time frame $t - 1$
 - $G = 1$, $y = X$
 - $A = 1$
 - $U = D' \Rightarrow A = 0$ in the faulty circuit
 - Conflict!

- Problem with this example
 - Try to extend D-algorithm for sequential circuits
 - Z is 1 in the presence of $u/1$ irrespective of
 - the logic values on other signal lines, and
 - the content of the flip-flop
Example (cont)

- Input sequence to set Z to 0 in the fault-free circuit
 - $E = 0$ and $G = 1$
 - $B = 1 \Rightarrow y = 1$
 - $u = v = 0$ and $w = 1$ in cycle $t - 1$
 - $u = 0$, $v = 1$ and $w = 1$ in cycle t

- $u \quad CK \quad Z$
 - v
 - w

Nine-Valued Signals

- A fault can be detected even if in the presence of the fault a signal line in the faulty circuit has an unknown value (X)
 - While the corresponding signal line in the fault-free circuit has a known value (0 or 1) or vice-versa

- This information is not expressed by the logic values 0, 1, D and D' introduced in the context of the D-algorithm
Nine-Valued Signals

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Symbol</th>
<th>Fault-free circuit value</th>
<th>Faulty Circuit Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><0, 0></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><1, 1></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><1, 0></td>
<td>D</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td><0, 1></td>
<td>D'</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td><X, X></td>
<td>X</td>
<td>0 or 1</td>
<td>0 or 1</td>
</tr>
<tr>
<td><0, X></td>
<td>G0</td>
<td>0</td>
<td>0 or 1</td>
</tr>
<tr>
<td><1, X></td>
<td>G1</td>
<td>1</td>
<td>0 or 1</td>
</tr>
<tr>
<td><X, 0></td>
<td>F0</td>
<td>0 or 1</td>
<td>0</td>
</tr>
<tr>
<td><X, 1></td>
<td>F1</td>
<td>0 or 1</td>
<td>1</td>
</tr>
</tbody>
</table>

Using Nine-valued Signals

- Propagate assigned values
- Assign values to propagate D or D
- Assign values to provoke D or D at stuck fault gate output
 - Primitive D-cube of the fault
- Line Justification
Propagating Assigned Values

<table>
<thead>
<tr>
<th>NOT</th>
<th>AND</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>D'</td>
</tr>
<tr>
<td>D'</td>
<td>D</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>G0</td>
<td>G1</td>
</tr>
<tr>
<td>G1</td>
<td>G0</td>
</tr>
<tr>
<td>F0</td>
<td>F1</td>
</tr>
<tr>
<td>F1</td>
<td>F0</td>
</tr>
</tbody>
</table>

Propagating assigned values for AND and OR gates:

- For propagating the fault effect through an OR gate with D input, apply \(<X, 0>\) to the other inputs of the OR gate.
- For propagating the fault effect through an OR gate with D’ input, apply \(<0, X>\) to the other inputs of the OR gate.
- For propagating the fault effect through an AND gate with D input, apply \(<1, X>\) to the other inputs of the AND gate.
- For propagating the fault effect through an AND gate with D’ input, apply \(<X, 1>\) to the other inputs of the AND gate.

Propagation D-Cubes

- For propagating the fault effect through an OR gate with D input, apply \(<X, 0>\) to the other inputs of the OR gate.
- For propagating the fault effect through an OR gate with D’ input, apply \(<0, X>\) to the other inputs of the OR gate.
- For propagating the fault effect through an AND gate with D input, apply \(<1, X>\) to the other inputs of the AND gate.
- For propagating the fault effect through an AND gate with D’ input, apply \(<X, 1>\) to the other inputs of the AND gate.
Assigning Values To Provoke D Or \overline{D}

- At stuck fault gate output
- Primitive D-cube of the fault

<table>
<thead>
<tr>
<th>AND Gate with output SA_0</th>
<th>a</th>
<th>b</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$<1,X>$</td>
<td>$<1,X>$</td>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AND Gate with output SA_1</th>
<th>a</th>
<th>b</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$<0,X>$</td>
<td>$<X,X>$</td>
<td>\overline{D}</td>
</tr>
<tr>
<td></td>
<td>$<X,X>$</td>
<td>$<0,X>$</td>
<td>\overline{D}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AND Gate with input a SA_0</th>
<th>a</th>
<th>b</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$<1,X>$</td>
<td>$<1,X>$</td>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AND Gate with input a SA_1</th>
<th>a</th>
<th>b</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$<0,X>$</td>
<td>$<X,1>$</td>
<td>\overline{D}</td>
</tr>
</tbody>
</table>

Line Justification

<table>
<thead>
<tr>
<th>AND Gate with output $<X,1>$</th>
<th>a</th>
<th>b</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$<X,1>$</td>
<td>$<X,1>$</td>
<td>$<X,1>$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AND Gate with output $<0,X>$</th>
<th>a</th>
<th>b</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$<X,X>$</td>
<td>$<0,X>$</td>
<td>$<0,X>$</td>
</tr>
<tr>
<td></td>
<td>$<0,X>$</td>
<td>$<X,X>$</td>
<td>$<0,X>$</td>
</tr>
</tbody>
</table>
Example: \(u/1 \)

- Provoke the fault
 - Apply \(<0, 1> = D'\) on signal line \(u \) at time frame \(t \)
- Propagate fault effect (along path through \(E \) and \(H \) to \(Z \))
 - \(v \) and \(G \) must be \(<1, X> = G_1\)
 - \(v \) is a primary input \(\Rightarrow v = <1, 1> \) at time \(t \)
 - \(A = <0, 0>\)
 - justify \(B = C = <1, X> \) (= \(G_1 \))
 - justifying \(C = <1, X> \) \(\Rightarrow w = C_1 <1, 1> \) at time frame \(t \)
 - justifying \(B = <1, X> \) \(\Rightarrow \) justify \(y = <1, X>\)
 - justify \(G = <1, X> \) at time frame \(t-1 \)

![Diagram of Digital System](image)

- Test for \(u/1 \)
 - \(u = 0, v = 0 \) and \(w = 1 \) in time frame \(t-1 \)
 - \(u = 0, v = 1 \) and \(w = 1 \) in time frame \(t \)
Complexity of ATPG

- **Synchronous circuit**
 - All flip-flops controlled by clocks; PI and PO synchronized with clock:
 - Cycle-free circuit – No feedback among flip-flops
 - Test generation for a fault needs no more than $d_{seq} + 1$ time-frames
 - d_{seq} is the sequential depth.
 - Cyclic circuit – Contains feedback among flip-flops:
 - May need 9^{Nff} time-frames
 - Nff is the number of flip-flops.
 - Asynchronous circuit – Higher complexity!

- **Cycle-Free Circuits**
 - Characterized by
 - Absence of cycles among flip-flops and
 - a sequential depth, d_{seq}.
 - d_{seq} is the maximum number of flip-flops on any path between PI and PO.
 - Both good and faulty circuits are initializable.
 - Test sequence length for a fault
 - is bounded by $d_{seq} + 1$.

$max = \text{Number of distinct vectors with 9-valued elements} = 9^{Nff}$
Cycle-Free Example

Circuit:

- F1
- F2
- F3

- Level = 1
- Level = 1
- Level = 1

- dseq = 3

s-graph

- F1
- F2
- F3

- Level = 1
- Level = 1
- Level = 1

All faults are testable

Cyclic Circuit Example

Modulo-3 counter:

- CNT
- F1
- F2

s-graph

- F1
- F2

Modulo-3 Counter

- Cyclic structure
 - Sequential depth is undefined.
- Circuit is not initializable.
 - No tests can be generated for any stuck-at fault.
- After expanding the circuit to $9^{N_{ff}} = 81$, or fewer, time-frames ATPG program calls any given target fault untestable.
- Circuit can only be functionally tested by multiple observations.
- Functional tests, when simulated, give no fault coverage.

Summary

- Combinational ATPG algorithms are extended:
 - Time-frame expansion unrolls time as combinational array
 - Nine-valued logic system
 - Justification via backward time
- Cycle-free circuits:
 - Require at most d_{seq} time-frames
 - d_{seq} is the maximum number of flip-flops on any path between PI and PO
 - Always initializable
- Cyclic circuits:
 - May need $9^{N_{ff}}$ time-frames
 - N_{ff} is the number of flip-flops
 - Circuit must be initializable
 - Partial scan can make circuit cycle-free
- Asynchronous circuits:
 - High complexity
 - Low coverage and unreliable tests