
Checking for Electrical Level Security Threats in
Bitstreams for Multi-Tenant FPGAs

Dennis R.E. Gnad∗, Sascha Rapp†, Jonas Krautter∗, Mehdi B. Tahoori∗
Institute of Computer Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

∗{dennis.gnad, jonas.krautter, mehdi.tahoori}@kit.edu †sascha.rapp@student.kit.edu

Abstract—Multi-tenant FPGAs, in which 3rd parties have par-
tial access to the FPGA fabric, are a rising usage trend in cloud
and reconfigurable SoCs. This gives rise to new types of attacks in
FPGAs, as shown in recent studies. These attacks can operate on
the electrical level through the common power delivery network,
making them very hard to isolate. Thus, software-controlled
FPGA configuration can be exploited to insert hardware trojans,
impacting the security of the entire system. The attacks can be
separated into fault and side-channel attacks to either actively
manipulate a system or quietly extract secret information. In this
paper, we show the first attempt of countermeasures against these
voltage fluctuation based attacks, by analyzing FPGA bitstreams
for malicious logic, basically implementing an FPGA antivirus.
We provide a way to check bitstreams for potentially malicious
structures, by extending a combination of commercial and open-
source tools.

I. INTRODUCTION

FPGAs are increasingly incorporated into many systems
from low-power IoT-devices such as smartphones, all the way
to high-performance cloud servers [1–5]. Altogether, FPGAs
are increasingly split among multiple users or 3rd parties, and
become remotely accessible, which opens up new security
threats through partial configuration bitstreams [6–11].

At the logic level, proper isolations and access restrictions
must be considered across different users of the same FPGA
fabric [12]. On the electrical level, fault attacks [13] and
power analysis side-channel attacks (SCA) [14] can still be
used to attack cryptographic implementations inside integrated
circuits, to recover secret information from the chip, even in
the presence of proper logic-level isolation. These types of
attacks traditionally carried out through physical access with
measurement and fault injection equipment, are shown to be
performed remotely through software-based access [6–11].

As multi-tenant FPGAs are a foreseen operation mode for
FPGAs [2, 3, 15], the elimination of associated security threats
is a must for their successful adoption. On one hand, it
might be possible to mitigate these threats by architectural
changes in the FPGA, such as separating the FPGA fabric
into blocks of individually powered voltage islands. On the
other hand, a hypervisor can be made responsible for only
allowing benign bitstreams to be loaded into the FPGA.
This mandates checking the bitstreams before loading, similar
to antivirus software checking binary executables. Existing
work already mentioned partial configuration bitstreams might
require checks as a safety measure to prevent dangerous short-
circuits [16]. The works that showed the remote electrical

attacks also mentioned to check bitstreams for malicious cir-
cuits as a potential countermeasure [6, 8]. Since architectural
changes are expensive and require a new chip generation, we
believe it is crucial to follow the path of bitstream checking,
but without overly restricting benign designs.

In this paper, we provide a methodology to check FPGA
bitstreams for patterns of malicious structures based on elec-
trical level attacks. By extracting a technology-mapped netlist
graph from existing bitstreams, we check for potential secu-
rity threats, the so-called signatures, containing fundamental
requirements for voltage-based attacks. Finally we will eval-
uate and discuss to which extent these design restrictions
affect benign designs, and what are the possible next steps
to decrease limitations without sacrificing security. For the
implementation, a mix of open-source and commercial tools
is used, with open-source contributions to icestorm [17] and
yosys [18]1.
Outline: Section II summarizes related work. Section III
explains our bitstream checking approach. Section IV shows
results and evaluation. Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Power Supplies and their Security Implications

Modern semiconductor chips are supplied by a power distri-
bution network (PDN). In these PDNs, there is a hierarchy of
active and passive electronic components that start at the board
level, reaching down to individual transistors to regulate the
supply voltage delivered to the individual components. Since
the network is not ideal, voltage noise persists on all PDN
levels.

PDNs are usually hierarchical, integrating multiple voltage
regulators for all the required voltage levels in the system.
They also require several resistor, capacitor and inductor
(RCL) components for proper functionality, while some ex-
ist as parasitic components. The total network can then be
modeled as a complex network of RCL components [19].

Voltage drop can then be simplified into Vdrop,R = IR and
Vdrop,L = LdI/dt components. In modern systems, Vdrop,L

is the more prominent part, originating from high changes in
current I in small times t, due to simultaneous fast switching
of multiple gates. This, in effect, will also affect the gate and
path delays tdelay ∝ Vsupply

Vsupply−LdI/dt−IR .

1Available: https://cdnc.itec.kit.edu/MaliciousBitstreams.php

SoC Platform 1) Voltage Drop-based Fault Attack [6,10]

2) Measure Voltage for Side-Channel Attack [7-9,11]

Passive
Measurement

Active
Influence

FPGA Attacker logic Victim FPGA / CPU
Logically
Isolated

Figure 1: Simplified summary of the two threats in a system with shared
FPGA logic, as an overview over the previous works [6–11]

Voltage fluctuations have security implications. On one
hand, significant voltage drop can lead to timing violations and
faults. These faults are used in fault attacks to recover secret
keys from cryptographic circuits [13], or crash a system for
denial-of-service (DoS) [6]. On the other hand, monitoring
voltage fluctuations from normal circuit behavior is a well-
studied side-channel that can leak secret information [14].

B. Threats in Systems Containing FPGA Logic

It has been shown that both power analysis SCA [7–
9, 11] and fault attacks [6, 10] are possible from inside an
FPGA chip, without dedicated measurement and fault injection
equipment. Through diverting FPGA primitives from their in-
tended use, standard FPGA software can be used to implement
designs that cause or measure voltage fluctuations, bypassing
any isolation features on the logical level, as summarized in
Fig. 1. Thus, attacks are possible from inside the chip that
require no logical connection between attacker and victim, and
can not be covered by existing mitigation procedures.

Fault Attacks that originate from inside the FPGA are based
on causing a high change in current in a small time (dI/dt),
used for Differential Fault Analysis [10], or DoS attacks [6].
In these attacks, ring oscillators (ROs) are implemented in
FPGA LUTs as shown in the top of Fig. 2. Enabling multiple
ROs simultaneously causes a high current in a short time,
and thus significant voltage drop. To cause a sufficient voltage
drop that leads to timing violations or a crash, the ROs are
toggled between enabled and disabled using an additional
ftoggle frequency, with a structure as shown in Fig. 3. By
that, the weak parts of a PDN are targeted for a successful
attack.

Power analysis SCAs use voltage or current fluctua-
tions [14]. Because tdelay depends on voltage, observing path
delays can be used as a sensor. By counting how often ROs
toggle in a fixed timeframe, relative voltage changes can be
estimated [20], as shown in Fig. 2. A faster sensor is a Time-
to-Digital Converter (TDC), shown in Fig. 4. It uses multiple
cascaded FPGA primitives with registers added between them.
Instead of counting, these registers can be read every clock
cycle to get a relative voltage estimation [21].

III. CHECKING FOR MALICIOUS LOGIC

In this work, we establish a methodology to check for
malicious structures in bitstreams. Similar to an Antivirus,
we look at signatures of malicious logic structures that might
lead to electrical-level attacks, by defining properties that these
structures fulfill. We check for both structural and behavioral

Voltage-level estimate

Counter

Ring oscillator with enable

LUT realizing a<=a & en en

a

Figure 2: Ring oscillator to sense
voltage fluctuations (cf. [8, 20])

Ring
Oscillator
Array

ftoggle
…

Frequency
Generator

fRO-internal,1

fRO-internal,0

fRO-internal,N

Figure 3: Ring oscillator array to cause
voltage drop-based faults (cf. [6])

Reg Reg Reg Reg Reg

clk

...

 Voltage-level estimate

LUT /

Latch

LUT /

Latch

Figure 4: LUT/Latch based delay line with carry-chain based Time-to-Digital
Converter to measure voltage fluctuations in FPGAs (cf. [7, 21])

properties that are uncommon in benign bitstreams, indicating
malicious intentions. Please note that we do not simply check
for exact matches of known attacks. Instead, we formulate the
fundamental properties required for the attacks.

In Fig. 5 we present our overall flow for checking bit-
streams. To be able to check existing FPGA bitstreams for
malicious logic, it has to be made readable by common
tools first. The bitstream is first unpacked into a vendor-
specific ASCII representation, which in turn is converted into
a flattened Verilog netlist using another tool. In our approach,
a full representation of the bitstream is generated, that is again
fully functional after re-synthesis and mapping.

After acquiring the technology mapped netlist, we split
up the detection of malicious logic into the identification of
combinational and sequential logic parts, across which both
signatures for fault and SCA are spread. Combinational cycles
can be both part of sensors, as well as a mechanism to
introduce faults. This makes a structural analysis of the netlist
graph necessary: Combinational cycles need to be extracted
in order to evaluate their oscillation behaviour and determine,
whether they can be used to cause faults. On the other hand,
we use timing analysis in sequential logic, to prevent timing
violations on paths that could reveal information about voltage
fluctuations. Even a single correlated bit could reveal enough
information when monitored over a certain timeframe.

In the following subsections we will give a more deeper
understanding about the basic primitives and requirements for
fault or side-channel attacks and their respective properties,
which we will have to find in either combinational or sequen-
tial logic of netlist graphs to detect malicious logic.

A. Signature for Fault Attacks

As explained in Section II-B, an attacker can use ROs to
cause faults or crash an FPGA. The crash or faults are achieved
by additionally controlling the RO oscillation with an enable
signal as Fig. 3 shows.

To identify a potentially malicious design, we evaluate
specific characteristics in combinational and sequential logic
respectively, summarized in Table I, under Fault Attack:

iceunpack Bitstream→Verilog: icebox_vlog(extended)

Combinational Cycle Analysis:
yosys(extended)

Timing Analysis:
Lattice Icecube2

Technology-Mapped Netlist
(no user-defined timing constraints)

ASCII
bitstream

Combinational
Logic Checks

Sequential
Logic Checks

Figure 5: Overview of the methodology and implemented flow to check
bitstreams for threats in combinational or sequential logic.

• From the generated netlist graph we extract combinational
cycles. An experimentally evaluated threshold defines the
maximum allowable (benign) number of cycles, which are
allowed to be deployed on the fabric without being able to
provoke crashes and fault attacks.

• Additionally, we check for a common node within the
logical input cone of the combinational cycles, which would
allow a synchronized activation/toggling of an RO grid.

B. Signatures for Power Side-Channel Attacks

In Section II-B we explained how an attacker can re-utilize
FPGA primitives in a way to measure voltage fluctuations
inside the chip. For this type of threat, two types of sensors
have been shown, which can be formulated as two signatures
that can be analyzed during bitstream checking.

In one case, ROs can be re-utilized as sensors, summarized
in Table I, under SCA #1:
• Because counters based on ROs allow to sample voltage

traces sufficiently for power analysis attacks [8], we must
again find combinational cycles, similar to fault attacks. In
this case, ROs must not have an observable output.

• These combinational cycles additionally require an output
to make them suitable as a sensor. In this case, opposed to
ROs for fault attacks, even a single RO can be sufficient to
measure voltage, and is thus potentially malicious.

In a second case (Table I, under SCA #2), TDCs or any
timing violations can be used as sensors. These can be checked
through timing analysis:
• To prevent the use of delay lines and thus TDC sensors, we

check the design for all possible timing violations. Even a
single bit with unstable output, which depends on the supply
voltage, can be enough to recover a secret encryption key.

Please note, since the design is extracted from a bitstream,
the extracted netlist has zero timing constraints. This will strip
the design from all user constraints that could otherwise hide
TDC sensors. However, it will also remove any legitimate
constraints, such as false path constraints for clock-domain
crossing synchronizers or similar circuits. The timing informa-
tion must be derived again from the basic board configuration
and external clock generator or crystal, as well as internal
clock generators, and also from the placement of the logic
elements from the bitstream.

Successful sensor detection depends on the quality of the
timing analysis, which has to include all possible clock
configurations set at runtime. More complex designs might,
for instance, use dynamic clock control or clock-domain
crossings. These are general tasks for timing analysis and
verification tools, and must report dynamic clock setups in

Table I: Circuit properties of malicious logic signatures

Property Fault Attack SCA #1 SCA #2

Has combinational cycles? × ×
Has timing violations? ×
Comb. cycle with input? ×
Comb. cycle with output? ×

which timing violations can occur. For security, only safe clock
setups must be enforced, which is out of scope in this work.

IV. IMPLEMENTATION AND RESULTS

Lattice iCE40 FPGAs are used for our evaluation, since their
bitstreams are already reverse engineered and an incomplete
tool existed that can create verilog from some elements in a
bitstream [17], which we extended. Please note that the basic
concept of our work will still hold true for other vendors.
Since the existing attacks were not shown on Lattice FPGAs
yet, we reproduce some of them.

A. Reproduction of Attacks in Lattice FPGAs

We reproduce a fault attack with ROs and side-channel
attack with TDCs on a Lattice iCE40-HX8K Breakout Board,
combined in a single design utilizing 62% FPGA resources.

Fault attack logic was implemented with LUT-based ROs,
following the concept in Fig. 3 like previous attacks. The
board crashes on a frequency sweep on ftoggle with 1920
ROs, using about 25% of available FPGA logic. For instance,
ftoggle = 300 kHz is suitable. The FPGA resets and loses its
configuration bitstream, but it can then be reprogrammed again
from the host PC.

For SCA, we reproduce the TDC-based (cf. Fig. 4) attack,
since RO-based sensors are not much different to ROs for
faults. We use a 24MHz AES-128 module with a 32bit
datapath. In the other half of the FPGA, we put TDC-based
voltage sensors at 96MHz, and use a synchronization helper
signal. We use the same leakage model as in [7], and achieve
a sucessful key recovery after about 40000 traces.

B. Toolchain Extensions

To implement our flow from Section III, we base the
bitstream reversal on a tool from the icestorm tools [17],
and extend it. The unmodified icebox_vlog tool allows re-
verse engineering LUT components from Lattice iCE40 FPGA
bitstreams into verilog. However, only logic assignments are
used, carry chain primitives are unsupported, and placement
constraints are missing. Thus, we extended icebox_vlog to
include placement constraints and carry elements, as well
as LUT instantiations of the respective iCE40 primitives,
matching the original bitstream. A limitation is the lack of
routing constraints, which do not exist in either commercial or
open-source software. Please note that for a completely secure
bitstream checker, routing would still need to be included.

To analyze combinational cycles, we extend the yosys open-
source synthesis/analysis tools [18]. Yosys allows to search
for combinational cycles by finding strongly connected com-
ponents (SCCs) in the netlist graph, while ignoring registers
during the search. By not revisiting nodes that it previously

processed, it will show cycles at arbitrary starting points per
default, but not the loopback signal, which we implemented
in our extension. At the same time, we use yosys to find a
potential outgoing or incoming signal into the SCC, to evaluate
the required properties shown in Table I.

Although the described tools are specific for Lattice iCE40
FPGAs, the general approach of reversing bitstreams into HDL
code and checking the design for threat signatures can be
deployed by all FPGA manufacturers in a similar and more
extensive way, when detailed vendor knowledge is available.

C. Evaluation on Reproduced Attack Bitstreams
Fault Attack: Fig. 6 shows an extract of a graphviz diagram
produced by our modified yosys and icebox_vlog software. It
shows a successful isolation of SCC subgraphs for each RO,
and includes their common input register instance (n53_inst),
which can enable or disable the ROs through the common
enable wire n53. The BUF blocks are interconnect points.
SCA: To identify timing-violation based TDC sensors, we use
the timing analysis tool within the Lattice iCEcube2 software.
We first implemented the original design of an attacker circuit,
and then reversed the resulting bitstream into a verilog file
using our modified icestorm tools. We compared the critical
paths of both original and reversed implementations. Both lead
to the last bit endpoint of the 64bit delay line TDC as the
most critical path. However, as expected, the reported slack
value differs slightly due to the lack of routing constraints
in the iCEcube2 toolchain. The result can be verified in the
floorplan. Figure 7 shows the critical path end node in the
original floorplan, which is identical with n19 in the reversed
floorplan in Figure 8.
Overhead: With the reproduced design and both attacks,
executing all checks requires about 2 minutes on an Intel Xeon
E5-1630v4 system.

D. Discussion
We have shown a first approach to detect the known voltage-

based attacks at the electrical level in which FPGA logic is re-
used maliciously. However, there still exist some limitations.
When checking for fault attacks, only combinational cycles
were examined. However in principle high-power sequential
logic could also cause faults. For SCA, the restrictions are too
high and can impact legitimate designs in the form of false-
positives, for instance with clock-domain crossings. These
issues will be addressed in our future work.

V. CONCLUSION

FPGAs offer a high degree of design freedom to allow
implementation of arbitrary designs in hardware, which can
be exploited by any attacker with access to FPGA bitstreams.
This freedom needs to be restricted to prevent a user from
programming potentially malicious (partial) bitstreams. In
this paper we show a first analysis on required fundamental
restrictions, and propose a flow how they can be enforced with
bitstream checking. Three attack signatures are formulated and
checked on technology mapped netlists, and we evaluate two
of them on known attacker designs.

n329

BUF

n182 BUF

n55

I0

I1

I2

I3

n329_inst
SB_LUT4

LUT_INIT: 0x5500
O

n54
I0

I1

I2

I3

n182_inst
SB_LUT4

LUT_INIT: 0x2222
O

n53

n1

C

D

E

R

n53_inst
SB_DFFESR Q

n320

1'1

n51

1'0

1'0

1'0

1'0

Wirename
Inter-

connect

In
pu

ts Instance
Name and
Attributes O

ut
pu

ts

I/O

Legend:

Figure 6: Combinational cycle extraction generated from modified yosys on
an example design with 2×ROs. The SB_DFFESR register is responsible
for enabling the ROs, and the shown SB_LUT4 implement inversions in two
variants of INIT configurations (0x5500, 0x2222).

Figure 7: End node of most critical
path in the original design

Figure 8: End node of most critical
path in the reversed design

REFERENCES
[1] “Inside the Samsung Galaxy S5,” Chipworks, 2014. [Online]. Available:

https://www.chipworks.com/ko/node/126
[2] K. Eguro and R. Venkatesan, “FPGAs for trusted cloud computing,” in

FPL, 2012.
[3] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized FPGA Accelerators

for Efficient Cloud Computing,” in CloudCom, 2015.
[4] Amazon EC2 F1 Instances. [Online]. Available: https://aws.amazon.

com/ec2/instance-types/f1/
[5] Instance type families – Alibaba Cloud Documentation Center. [Online].

Available: https://www.alibabacloud.com/help/doc-detail/25378.html
[6] D. R. E. Gnad, F. Oboril, and M. B. Tahoori, “Voltage Drop-based Fault

Attacks on FPGAs using Valid Bitstreams,” in FPL, 2017.
[7] F. Schellenberg, D. R. E. Gnad, A. Moradi, and M. B. Tahoori, “An

Inside Job: Remote Power Analysis Attacks on FPGAs,” in DATE, 2018.
[8] M. Zhao and G. E. Suh, “FPGA-Based Remote Power Side-Channel

Attacks,” in S&P, 2018.
[9] C. Ramesh et al., “FPGA side channel attacks without physical access,”

in FCCM, 2018.
[10] J. Krautter, D. R. E. Gnad, and M. B. Tahoori, “FPGAhammer: Remote

Voltage Fault Attacks on Shared FPGAs, suitable for DFA on AES,”
TCHES, 2018.

[11] F. Schellenberg, D. Gnad, A. Moradi, and M. Tahoori, “Remote Inter-
Chip Power Analysis Side-Channel Attacks at Board-Level,” in ICCAD,
2018.

[12] T. Huffmire et al., “Moats and Drawbridges: An Isolation Primitive for
Reconfigurable Hardware Based Systems,” in S&P, 2007.

[13] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the Importance of
Checking Cryptographic Protocols for Faults,” in EUROCRYPT, 1997.

[14] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in
CRYPTO, 1999.

[15] “FPGA Device Feature List (DFL) Device Drivers,” Linux Weekly
News. [Online]. Available: https://lwn.net/Articles/757283/

[16] C. Beckhoff, D. Koch, and J. Torresen, “Short-Circuits on FPGAs
Caused by Partial Runtime Reconfiguration,” in FPL, 2010.

[17] C. Wolf, “Project IceStorm.” [Online]. Available: http://www.clifford.
at/icestorm/

[18] ——, “Yosys Open SYnthesis Suite.” [Online]. Available: http:
//www.clifford.at/yosys/

[19] K. Arabi, R. Saleh, and X. Meng, “Power Supply Noise in SoCs:
Metrics, Management, and Measurement,” Des. Test. Comput., 2007.

[20] K. M. Zick and J. P. Hayes, “Low-cost Sensing with Ring Oscillator
Arrays for Healthier Reconfigurable Systems,” TRETS, 2012.

[21] K. M. Zick, M. Srivastav, W. Zhang, and M. French, “Sensing
Nanosecond-scale Voltage Attacks and Natural Transients in FPGAs,”
in FPGA, 2013.

