
ExtraTime: Modeling and Analysis of Wearout due
to Transistor Aging at Microarchitecture-Level

Fabian Oboril and Mehdi B. Tahoori
Chair of Dependable Nano Computing (CDNC), Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
Email: {fabian.oboril, mehdi.tahoori}@kit.edu

Abstract—With shrinking feature sizes, transistor aging due
to NBTI and HCI becomes a major reliability challenge for
microprocessors. These processes lead to increased gate delays,
more failures during runtime and eventually reduced operational
lifetime. Currently, to ensure correct functionality for a certain
operational lifetime, additional timing margins are added to the
design. However, this approach implies a significant performance
loss and may fail to meet reliability requirements. Therefore,
aging-aware microarchitecture design is inevitable. In this paper
we present ExtraTime, a novel microarchitectural aging analysis
framework, which can be used in early design phases when
detailed transistor-level information is not yet available to model,
analyze, and predict performance, power and aging. Further-
more, we show a comprehensive investigation using ExtraTime of
various clock and power gating strategies as well as aging-aware
instruction scheduling policies as a case study to show the impact
of the architecture on aging.

Index Terms— NBTI; HCI; Wearout Modeling; Microarchi-
tecture; Performance Simulator;

I. INTRODUCTION

Aggressive transistor scaling of CMOS technology over the
past decades allowed increasing transistor counts and by this
means the realization of more and more features in modern
microprocessors. However, the success of future generations
is threatened by various reliability challenges associated with
decreasing feature sizes to nanoscale dimensions. Thereby
faster transistor aging, is one major reliability issue [6].
Among several physical effects that cause transistor aging
Negative Bias Temperature Instability (NBTI) [37] and Hot
Carrier Injection (HCI) [31] are the dominant effects [4]. Both
phenomena lead to a shift of the threshold voltage (Vth) of the
impaired transistors, which manifests in increasing switching
and path delays. This will eventually lead to timing violations
and finally to faster wearout of the system. Thereby, NBTI-
and HCI-induced wearout strongly depends on several key
factors such as usage (gate bias, number of transitions, etc.),
temperature and supply voltage of the affected transistors.

To combat these runtime degradation issues, manufacturers
are currently adding safety margins (guardbands) to their
designs, to ensure that the chips will be functional for a certain
lifetime. However, for a 32 nm technology the necessary
overdesign in terms of performance can easily exceed 10% for
a 3 year lifetime [20]. To make it even worse, transistor aging
will accelerate with downscaling, leading to larger margins and
thus to an even higher performance loss [6], [20]. This also
implies increasing costs for development and manufacturing.

Hence, new approaches are necessary to take further ad-
vantage of scaled technology nodes. Therefore, an aging-aware
design of the entire processor, including the microarchitecture,
is inevitable. To achieve this goal, it is necessary to assess
transistor aging already in early design phases and to balance
aging with other key design aspects (performance, power and
area). However, a major challenge is that detailed transistor-
level information is not yet available in these phases making
an accurate wearout estimation very difficult.

Therefore, we propose in this work ExtraTime: a novel
aging-aware microarchitectural framework. ExtraTime enables
design space exploration in early design phases (e.g. devel-
opment of the microarchitecture) not only for performance
and power but also for aging, without having detailed knowl-
edge about the final hardware implementation or layout. This
framework is based on a cycle-accurate performance simulator
with extensions to model power consumption and temperature.
Moreover, ExtraTime includes novel and accurate aging mod-
els for NBTI and HCI at microarchitecture-level, derived from
and validated with transistor-level models. By this means it
is possible to investigate various aging mitigation techniques
and their influence on many critical design parameters like
temperature, power, performance and particularly wearout,
while various applications are running on the processor.

Compared to the previous work, our framework comes with
several benefits. First, no detailed transistor-level information
is necessary, so that ExtraTime can be used in early design
phases to optimize the architecture for performance, power
and aging mitigation.Even though some methods existing [3],
[12], [16], [29], [32] focus also at microarchitecture-level,
they require detailed transistor-level information, making them
inappropriate for this purpose. Second, the previous models
used to estimate aging are often too simplistic (e.g. usage-
dependency is not correctly considered, inaccurate temperature
modeling) leading to overestimations [14], [23], [30], [32].
As shown later in this paper, neglecting the influence of
usage or temperature has a tremendous impact on wearout
estimation. In addition the impact of such techniques on power
or performance is often not investigated in previous work.
Hence, an accurate microarchitectural framework that does not
need transistor-level information is still missing. This gap can
be closed with ExtraTime.

To illustrate the applicability of this framework, we show
a comprehensive analysis of various clock and power gating

978-1-4673-1625-5/12/$31.00 ©2012 IEEE

strategies as well as aging-aware instruction scheduling poli-
cies for a superscalar architecture. The results obtained with
ExtraTime show that it is possible to extend lifetime by more
than 4 times, while performance is only reduced by 4% in
average. This performance loss can be eliminated using some
of the gained timing headroom (i.e. clock frequency can be
increased).

In summary, the key contributions of this work are as
follows. First, ExtraTime, a microarchitectural framework to
model and analyze wearout due to transistor aging is pre-
sented. Second, accurate microarchitectural aging models for
NBTI and HCI are introduced and validated with detailed
transistor-level models. And finally a thorough analysis of
various aging mitigation techniques using ExtraTime is shown.

The rest of this paper is organized as follows. In Section II
the considered aging phenomena are introduced and previous
work in the scope of transistor aging is discussed. The novel
ExtraTime framework including the microarchitectural aging
models, an accuracy analysis and comparison with state-
of-the-art solutions is presented in Section III. The applied
aging mitigation techniques are provided in Section IV. The
corresponding results can be found in Section V. Afterwards,
we conclude in Section VI.

II. PRELIMINARIES ON TRANSISTOR AGING

Transistors age mainly due to the physical phenomena
Negative Bias Temperature Instability (NBTI) and Hot Carrier
Injection (HCI) [4]. Both phenomena and their transistor-
level models are described in more details in the following.
Afterwards, some previous work is discussed.

1) NBTI: The NBTI effect consists of two different phases.
When a logic ’0’ is applied at the gate of a PMOS transistor,
this transistor is under stress. During this phase, traps are
generated in the interface between gate oxid and channel,
which increases |Vth|. In contrast, when a logic ’1’ is applied
at the gate of the same transistor, some traps are filled, which
leads to a decreasing |Vth| (recovery phase). However, the
initial shift cannot be entirely compensated leading to an
overall Vth drift over time. Thereby, the shift depends on
several different aspects, e.g. temperature T , supply voltage
Vdd and the ratio between the time a transistor is under stress
and total time (duty cycle δ).

In [37] an analytical model for the NBTI process is derived.
With this analytical model it is possible to make a long term
prediction of the Vth shift for a couple of years. Thereby, ∆Vth
at time t > 0 is given by:

∆Vth(δ, T, Vdd, t) ≤ AN · u(Vdd) · (v(T) · δ(t) · tm)
n

w(δ, T, t)2n
(1)

with

u = (Vdd − Vth) · exp((Vdd − Vth)/E0)

v = ξ4 · exp(−Ea/kT)

w = 1−

(
1−

ξ1 +
√
ξ3 · v(T) · (1− δ(t)) · tm
ξ2 +

√
v(T) · t

) 1
2n

Factor NBTI HCI
Supply Voltage exponential exponential

Temperature exponential exponential
“Usage” nonlinear (see Figure 1(a)) sublinear (root)

TABLE I
INFLUENCE OF SEVERAL PARAMETERS ON NBTI/HCI-INDUCED AGING

where AN , n, E0 and ξi are technology dependent constants,
Ea is the activation energy (positive), k is the Boltzmann
constant and tm is the period between two measurements.

2) HCI: HCI is mainly affecting NMOS transistors, where
accelerated electrons inside the channel can collide with the
gate oxide interface and thereby create electron-hole pairs.
Thus, free electrons get trapped in the gate oxide layer, which
leads to an increasing Vth.

Since the “hot” energetic electrons are only generated when
the NMOS transistor is making a transition [11], the voltage
shift is very sensitive to the number of transitions. The authors
in [31] have shown, that the relationship between the number
of transitions, i.e. runtime, and voltage shift is sublinear.
Hence, the voltage shift has a sublinear dependency on the
clock frequency f , runtime t and the activity factor α, which
is the ratio of the cycles the transistor is doing transitions and
the total amount of cycles. Furthermore, the HCI effect has
an exponential dependency on temperature [8]. Putting all the
dependencies together leads to the following model, which
describes the HCI effect:

∆Vth(α, T, Vdd, t) = AH · u(Vdd) · v(T) ·
√
α · f · t (2)

with

u(Vdd) = exp((Vdd − Vth)/E1) , v(T) = exp(−Ea/kT)

AH and E1 are technology dependent constants and the
activation energy Ea is again considered to be positive. Please
note that the temperature relation for technology nodes larger
than 100 nm is reversed [8].

3) Summary: NBTI and HCI lead to a Vth shift, which re-
sults in an increased switching delay of the affected transistors.
Thereby, the shift depends on various parameters as shown in
Table I, namely temperature T , supply voltage Vdd, frequency
f and “usage”, i.e. the time a transistor is active (HCI) or under
stress (NBTI). Hence, neglecting just one of these influences
or the correlation between these (i.e. voltage → temperature,
usage→ temperature, etc.) can lead to a very inaccurate aging
estimation. In Figure 1 the first order influence of temperature
and “usage” is illustrated. As one can easily see, even small
deviations from the real “usage”/temperature value can have
a huge impact on the estimated wearout. For this reason it is
necessary to consider all aspects at once.

4) State of the Art: A lot of research is done at various
design levels to mitigate aging effects. To name just a few,
special NBTI-resilient circuits [1], input vector control [15],
[38], power gating [9], [10], adaptive body biasing [32], dy-
namic voltage and frequency scaling (DVFS) [3] and enhanced
instruction and application scheduling techniques [29], [32]
are some of the existing aging mitigation methods. However,
the focus of all these approaches is just on aging mitigation.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

W
ea

ro
ut

(∆
V
th

)

Duty Cycle / Activity Factor

NBTI
HCI

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

300 320 340 360 380 400

N
or

m
al

iz
ed

W
ea

ro
ut

(∆
V
th

)

Temperature in Kelvin

NBTI
HCI

Fig. 1. Influence of Temperature (normalized to 360 K) and Usage (Duty Cycle for NBTI, Activity Factor for HCI) on Aging due to NBTI and HCI

A thorough study taking both performance and power into
account is still missing. Furthermore various “aging sensors”
have been proposed [2], [13], [21]. However, these cannot slow
down aging, at most they can indicate that a device will fail
soon.

Some work [12], [14], [16], [23], [30], [32] also proposes
frameworks to model and analyze aging at different abstraction
level. An overview and comparison with our approach will be
presented in Section III-D.

III. EXTRATIME FRAMEWORK

The goal of this work is to model and analyze wearout due
to transistor aging at microarchitecture-level. For this reason
we have developed a novel aging-aware microarchitectural
framework called ExtraTime. In this section we will present
the overall idea and the main components of ExtraTime.
Furthermore, the aging models at microarchitecture-level are
introduced and at the end a comparison with state-of-the-art
solutions is presented.

A. Basic Components

The basis of our ExtraTime framework is the gem5 per-
formance simulator [5] that includes a cycle-accurate model
for a pipelined, out-of-order, superscalar architecture, which
is based on the Alpha 21264 core [22]. While running sev-
eral different workloads gem5 delivers detailed information
about the overall performance of the modeled processor and
about the usage of different microarchitectural blocks such as
pipeline stages or execution units. However, this information
is not enough to make an accurate aging estimation as shown

ExtraTime Framework

gem5 Performance Simulator

Power
Model

Temp.
Model

Aging
Model

Power
Data

Delay
Data

Temp.
Data

Perf.
Data

Power

Temp.

Specification
Application

Technology
Parameters

Temp.
Data

Perf.
Data

Technology Data

Fig. 2. Data/Information flow in our ExtraTime Framework

in Table I. Therefore, sophisticated temperature models are
necessary. Since temperature strongly correlates with power
consumption, also detailed models for power are needed. For
the power model (both dynamic and static power) we use a
customized version of McPAT [26] and the temperature model
is based on HotSpot [17].

The temperature information in conjunction with informa-
tion about the usage/activity of different microarchitectural
blocks is used by our microarchitectural aging models for
NBTI and HCI. These will be explained in detail in the
following Subsection III-B. With the help of these models
the actual and future aging status of the transistors inside
each block can be estimated by using just microarchitectural
information. An illustration of the model interaction can be
also found in Figure 2. Please note that we have integrated
all models in one common framework. This enables a runtime
analysis of power, temperature and wearout (online), which re-
duces simulation time and makes the investigation of dynamic
runtime adaptation techniques possible.

A simplified version of ExtraTime is presented in [27].

B. Aging Models at Microarchitecture-Level

For our purpose, to model aging at microarchitecture-level
without having detailed transistor-level implementations, it
is necessary to use special models. In the following we
will introduce these models and how these are derived from
transistor-level models.

1) Definition of an Aging Metric: As the first step to build
the microarchitectural aging models, the definition of a useful
metric to estimate aging is necessary. For this purpose we
use the relative delay change (∆reldB) of a microarchitectural
block B at time t > t0 induced by aged transistors, which is
defined as the ratio of the delay change (∆dB at time t) over
the original delay dB (at time t0):

∆reldB(t) =
∆dB(t)

dB(t0)
=

dB(t)

dB(t0)
− 1.

The delay of a block always depends on its transistor
layout (i.e. the number, size and type of transistors in the
critical paths, the delay of the transistors, etc.). This in-
formation is usually not available at microarchitecture-level,

e.g. in early phases of the microprocessor development the
RTL- or transistor-level circuit description is not available.
Hence, in order to build microarchitectural aging models some
assumptions of the underlying hardware layout are necessary.
Therefore, we assume that all transistors in one microarchi-
tectural block behave similar, i.e. age at the same rate. This
means that all transistors inside one microarchitectural block
can be represented by one single transistor TB (representative
transistor). By this means ∆reldB of a block can be estimated
by the relative delay change of the representative transistor
∆reldTB , inside this block, i.e. :

∆reldB = ∆dB/dB ≈ ∆reldTB . (3)

The aging effects we consider in this work, i.e. NBTI and
HCI, lead to a shift of the threshold voltage Vth of the impaired
transistor. This shift manifests in an increased transistor delay
d. The relation between Vth and d follows a power law [7]:

d = C · (Vdd − Vth)−r, (4)

where C and r are a technology dependent constants. With
this relationship, the relative delay change ∆reldTB of the
representative transistor in block B and by this means the
relative delay change of all transistors in block B is:

∆reldTB (t) =

(
1− ∆Vth(t)

Vdd − Vth(t0)

)r

− 1 = f(∆Vth(t)).

Since everything in this equation is constant in time (and
known) except ∆Vth, just ∆Vth needs to be calculated to
determine ∆reldTB . In combination with equation (3) aging of
the microarchitectural block B can be estimated. Moreover, as
it will be explained in the following subsections, ∆Vth can be
estimated using only microarchitectural information and some
known constants. Thus, ∆reld of each block can be calculated
using only data which is known at microarchitecture-level.

∆reldB = ∆dB/dB ≈ ∆reldTB = f(∆Vth)
= f(g(para. known at microarchitecture-level))

The last equation is also the reason, why the relative delay
change is a better choice for the aging metric than the total
delay change. While the former one can be estimated using
only microarchitecutral information, for the latter the original
delay dB(t0) needs to be known, which is usually not the
case at microarchitecture-level. Furthermore, the Mean Time
To Failure (MTTF) is a function of the maximum ∆reldB ,
which does not lead to timing failures. Hence, also MTTF
can be determined using the relative delay change as metric.

2) Negative Bias Temperature Instability: The goal in the
following is to estimate the Vth shift of the representative
transistor TB of a microarchitectural block B due to NBTI
by using only microarchitectural information.

While the technology dependent constants ξi, n, the Boltz-
mann constant k and the activation energy Ea in equation (1)
and Vdd are fixed and hence known, the transistor dependent
temperature T and duty cycle δ are variables, that have
to be attained. Since we assume that all transistors in one
microarchitectural block behave similar, they have the same

temperature (as the whole block) TB , which can be obtained
from the temperature model of ExtraTime. By this means, also
TB has this temperature. In order to estimate the duty cycle
δ of TB (ratio between the time the transistor is under stress
and total time) at microarchitecture-level, the duty cycle δB
of the block B is used, which represents the usage behavior
of the block. Therefore, the stress time of block B is defined
as the time in which at least one transistor inside this block
can be under stress:

δB =
tstress,B
ttotal

=
cycstress,B
cyctotal

(5)

Thus, the newly defined microarchitectural duty cycle δB of
an entire block can be derived from parameters delivered by a
performance simulator (total cycle count = #cyctotal, number
of stress cycles = #cycstess,B). In case power gating is used,
the number of stress cycles can be easily calculated using the
following relation (number of power gated cycles = #cycpg,B):

#cycstess,B = #cyctotal − #cycpg,B .

Putting all this together and using δB as an estimation of duty
cycle of the representative transistor TB leads to an upper
bound estimation at microarchitecture-level for the Vth shift
of TB induced by NBTI:

∆worstVth(t) ≤ AN · u(Vdd) · (v(TB) · δB · tm)
n

w(δB , TB , t)2n
, (6)

whereby u, v and w are defined as in the transistor-level model
(see Equation (1)), but using the microarchitectural values TB
and δB instead of the transistor dependent ones (T and δ).

However, the definition of the block duty cycle in Equation
(5) is an upper bound estimation for the transistor duty cycle,
since the duty cycle of every transistor inside a block will
be far less than the duty cycle of the entire block in typical
workloads. Hence, the real Vth shift will be smaller than the
one calculated in Equation (6), which means that this equation
is an overestimation. To improve the estimation, we use the
fact that the duty cycle of a transistor inside a block B is the
product of the duty cycle of the block δB and the effective
duty cycle δe. Together with the assumption that the effective
duty cycle of different transistors inside one block is uniformly
distributed between 0 and 1, one can calculate the “average”
Vth shift (over all transistors in block B) as follows:

∆avgVth(t) ≤
1∫

0

ANu(Vdd)
(v(TB) · δB · δe · tm)

n

w(δB · δe, TB , t)2n
dδe. (7)

One should note that this estimation might be too optimistic for
certain transistors inside the block, but since we are interested
in the Vth shift of the representative transistor, i.e. the delay
change of the entire microarchitectural block rather than in
the change of a single transistor, the “average” Vth shift is
a good estimation. Hence, we will use this equation as our
microarchitectural NBTI model to estimate the Vth shift of
the representative transistor TB . This is then used to determine
∆reld with the help of Equation (4).

If detailed knowledge about the underlying hardware imple-
mentation is available, one can also use a partially weighted
mean (integral) to achieve higher accuracy, for example to
represent duty cycles which follow a normal distribution.

3) Hot Carrier Injection: As for NBTI, the goal of the
following part is to estimate the Vth shift of the representative
transistor TB due to HCI by using only microarchitectural
information.

The approach to transfer the transistor-level model for HCI
in Equation (2) to microarchitecture-level is quite similar
to the one used for NBTI. Again the problem is that the
temperature T corresponds to individual transistors and the
activity factor α is also transistor-dependent. Hence, again
the temperature TB of an entire microarchitectural block B
is used for all transistors inside this block. Since the activity
factor of a transistor is the product of the activity factor of
this transistor while the complete microarchitectural block B
is active (effective activity factor αeff) and the activity factor
αB of the block, Equation (2) can be written as follows:

∆Vth(t) = AH ·
√
αeff · u(Vdd) · v(T) ·

√
αB · f · t

Thereby a block is active, when at least one transistor inside
this block is active (i.e it can make a transition):

αB =
tactive,B
ttotal

=
cycactive,B
#cyctotal

As the equations above illustrate, the activity factor αB of a
block, can be calculated using only parameters delivered by the
performance simulator (total cycle count = #cyctotal, number
of active cycles = #cycactive,B). In case clock or power gating
is available, the number of active cycles of a block can be
calculated using the following relation (number of power gated
cycles = #cycpg,B , number of clock gated cycles = #cyccg,B):

#cycactive,B = #cyctotal − #cycpg,B − #cyccg,B .

With regard to the representative transistor, the effective ac-
tivity factor αeff has a specific meaning. It represents the
average switching activity αavg,B of all gates in the microar-
chitectural block B. In the worst case the average switching
activity for the (near-)critical paths can be 1, according to
our transistor-level investigations using SPEC2000 workloads.
Hence, we use the value of 1 for αavg,B to obtain the
maximum Vth shift that can be induced by typical applications.
If detailed transistor-level information is available this value
can also be adjusted.

Thus, the HCI model at microarchitecture-level and in this
way the estimation of the Vth shift of the representative
transistor TB has the form:

∆Vth(t) = AH ·
√
αavg,B · u(Vdd) · v(TB) ·

√
αB · f · t (8)

Similar to NBTI induced aging, Equation (4) and (8) enable
us to also calculate the ∆reld due to HCI during runtime to
determine the actual aging status.

C. Accuracy Analysis

As mentioned earlier, the abstraction of the aging models
from transistor-level to microarchitecture-level has an impact
on the accuracy. The purpose in the following is to quantify
the amount of inaccuracy due to this abstraction.

1) Temperature: One major assumption of our proposed
microarchitectural aging models is that all transistors within a
block have the same temperature and hence we neglect tem-
perature fluctuations within a block. Using HotSpot [17] and
the experimental setup described in Section V-A we found that
the maximum temperature difference in one microarchitectural
block is at most 6 ◦C. As it is shown for an ALU in Table
II, this leads to a difference in terms of the total delay of less
than 1 %, which is negligible. Also the difference in terms
of ∆reld is considerably small (< 5 %), i.e. the deviation of
our microarchitectural aging models compared to an accurate
transistor-level model is less than 5 %.

2) Usage: Beside the assumption that all transistors have
the same temperature, we also made an assumption regarding
the “usage” of the transistors in a microarchitectural block, i.e.
the time a transistor is active (HCI) or under stress (NBTI).

For NBTI we derived the “average” Vth shift given in
Equation (7), to take into account that different transistors in
one block will have different stress time. We have validated
this approach using a detailed transistor-level model of an
ALU by considering the influence of different input vectors
(i.e. different instruction opcodes and different operands) [38]
and the stacking effect [35]. Therefore, the ALU of the Illinois
Verilog Model (IVM) [36], which is a Verilog model for
the Alpha 21264 core, was synthesized using the Synopsys
Design Compiler and mapped to the SAED 90 nm standard
cell library. Afterwards, for each instruction 10,000 random
operands together with the instruction opcode were applied
at the inputs of the ALU to find out the duty cycle of each
transistor in the 10% most critical paths. In the next step,
the delay change for each considered transistor was estimated
using the transistor-level model given in Equation (1). Using
these results the overall delay change for the entire ALU
was calculated. For a runtime of three years under a constant
temperature of 70 ◦C, this gate-level approach estimates
the maximum ∆reldALU (maximum over all input vectors)
to be 9.7%. Using our microarchitectural NBTI model the
∆reldALU is estimated to be 9.4% under the same conditions
(i.e. temperature, technology, etc.). As shown in Table III our
model is just 3% off. This shows that our microarchitectural
aging model for NBTI comes with a reasonable accuracy given
the level of abstraction, but in addition microarchitectural
investigations are possible. Please note that investigating the
maximum ∆reldALU is sufficient here, since the maximum

Temperature ∆reldALU after 3 years
due to NBTI due to HCI

Minimum 71 ◦C 9.4% 8.5%
Maximum 77 ◦C 9.6% 8.9%

Relative Difference 2.1% 4.5%

TABLE II
TEMPERATURE EFFECT ON AGING INDUCED DELAY CHANGE FOR AN ALU

∆reldALU after 3 years
NBTI HCI

Detailed Transistor-Level Model (Max) 9.7% 8.4%
Proposed Microarchitectural Model 9.4% 8.4%

Relative Difference 3.1% 0.0%

TABLE III
DIFFERENCE BETWEEN AN DETAILED TRANSISTOR-LEVEL MODEL AND

OUR PROPOSED MICROARCHITECTURAL MODELS REGARDING THE
ESTIMATE DELAY FOR AN ALU AFTER 3 YEARS DUE TO NBTI

delay degradation that can occur matters most, i.e. it does not
matter how many input combinations are working, as long as
one can lead to a timing failure, the entire system can fail.
Furthermore, it is worth to note that the accuracy of our mi-
croarchitectural model for NBTI can be improved, if detailed
knowledge about the underlying hardware implementation is
available. In that case the “average” Vth shift given in Equation
(7) can be modified using a partially weighted mean (integral)
to represent duty cycles which follow a normal distribution.

For HCI the accuracy investigation is very similar. The
only difference is, that pairs of input combinations have to
be investigated, in order to obtain the switching behavior of
the circuit. The results are even better, showing that also
the model for HCI comes with a satisfying accuracy for the
estimation of the maximum degradation with respect to the
level of abstraction.

D. Advantages of ExtraTime

Beside the accurate aging models, ExtraTime possesses
several other advantages compared to previous work at
microarchitecture-level. In the following part the advantages
are explained and underlined with experimental data.

To increase the accuracy of the aging estimation we have
extended the power model (based on McPAT) in various areas.
Our customized version uses the actual temperature of each
microarchitectural block to estimate leakage power. Compared
to the original version, in which all blocks were assumed to
have the same temperature, this is a huge benefit. This is also a
major lack in current solutions such as [12], [30], [32], where
usually first the performance simulation is accomplished,
afterwards a power trace is created followed by a modeling of
the temperature behavior. Hence, an accurate coupling between
temperature and power is missing in most existing solutions.
Thereby, our results obtained with the adjusted version of
McPAT show that a temperature difference of 10 degrees can
impact leakage power by up to 50%, if temperature increases
by 30 degrees leakage power can even increase by a factor of
3. Due to the coupling between temperature and power, the
increase in leakage power leads to an increase in temperature,
which can be up to 23 degrees (analysis based on HotSpot)
in the latter case. If power and temperature are considered
independently, the increase in leakage power and its impact on
temperature is neglected. For this reason it is very important
to consider the tight coupling between temperature and power,
in order to obtain accurate power, temperature results, which
are necessary to accurately estimate aging.

Furthermore, most previous techniques use aging models
that are too simplistic. Often the applied models do not

consider usage at all [14], [23], [30], meaning a microarchi-
tectural block has always the same aging rates, no matter if
the block is used, clock gated or power gated. Hence, these
frameworks are not capable of accurately modeling aging of
modern microprocessors under varying applications. In [32]
usage is taken into account, but for HCI the usage dependency
is considered to be linear. In fact, this relationship is sublinear
[31], which leads to overestimations. Another problem of
some techniques is that the temperature is estimated on a too
coarse level, e.g. in [30] the highest temperature of the entire
microprocessor is used to estimate aging. Our experimental
analysis shows that this would lead to around 30% wearout-
overestimation for the execution units of the processor under
investigation (see Section V-A).

Another advantage of our approach is the integration of
all models in one common framework. In order to allow
dynamic runtime adaption (see [28]) based on the current
state (temperature, power, aging, performance) of the micro-
processor it is necessary to calculate the power consumption,
temperature or wearout every X cycles while the simulation is
running (online) rather than only once after the simulation is
done (offline). Transferring the necessary data every X cycles
among standalone (offline) solutions can result in considerable
performance overhead (up to 25%) and huge data storage
overhead (up to 25x). In summary, the only viable solution
to accurately investigate wearout, temperature, and power
including the runtime behavior of the executed applications
is the integration of the necessary models in one holistic
framework. However, this is missing in all previously pub-
lished techniques, which have their focus on microarchitectural
solutions. ExtraTime closes this gap.

IV. AGING MITIGATION TECHNIQUES

With all these features the ExtraTime framework gives
one the possibility to explore many different techniques and
policies at microarchitecture-level to investigate and balance
performance, power and wearout. Major factors which can be
addressed to slow down aging are the temperature T , supply
voltage Vdd and usage, i.e. the time a transistor is active (HCI)
or under stress (NBTI). Hence, a good workload distribution
among the available execution units in a superscalar archi-
tecture is crucial for efficient aging mitigation. Thereby, in
this work the focus is on clock and power gating and “aging-
aware” instruction scheduling.

A. Clock Gating

Clock gating is a well known and very efficient technique to
reduce the active power consumption of a microprocessor. By
switching off the clock signal for a logic block, the latches
inside this block are no longer toggling. Hence the overall
switching activity can be reduced leading to a lower (dynamic)
power consumption [33]. Furthermore, clock gating can be
used to mitigate the effects of NBTI and HCI. By reducing
the power consumption, the temperature decreases, and hence
the Vth shift due to NBTI and HCI is damped. Regarding HCI,
clock gating additionally reduces the switching activity which

also lowers the Vth shift. Since the clock can be (de)activated
every cycle without any delay, clock gating does not come
along with performance losses, which makes it very attractive.

B. Power Gating

Power gating is nowadays not as widespread as clock gating.
Currently it is mainly used in multi-core processors to switch
off unused cores to reduce power consumption [25]. Like clock
gating, power gating can be used also to mitigate aging effects.
Since it reduces the power consumption, temperature decreases
which in turn mitigates the NBTI and HCI effect. Furthermore
the stress time of PMOS transistors is reduced and thereby
δB , since a power gated PMOS transistor is in recovery mode
(Vgs = 0). In addition power gating also lowers the number of
(unnecessary) transitions and thereby αB . By this means the
NBTI and HCI effects are mitigated. However, it takes some
time to power down or up a block of a processor, whereby
the time periods depend on the size and amount of the power
gate transistors as well as the size of the power-gated block.
Recent work has shown, that an ALU can have a wake up time
of 3 ns to 10 ns [24], [34]. Hence the power gated block is
not available for a certain amount of time, which can lead
to performance losses. In this work, a wakeup time of 7 ns
and a power down period of 3 ns are used. The time period,
tidle, after which a unit can be power gated and the minimum
duration, tdur, of power gating can be chosen freely. Please
note that the time a unit is power gated, tsleep, can be much
longer than tdur. An illustration of the relationship between
the different periods is given in Figure 3.

C. Aging-Aware Scheduling Techniques

State-of-the-art superscalar microprocessors contain several
execution units of the same type, that can be used in parallel
depending on the degree of instruction level parallelism (ILP)
of the executed code. For example, Intel’s Core architecture
shelters 3 ALUs and 2 SSE units [18] and IBM’s Power7
includes 2 fixed-point units, 2 load-store units and 4 floating-
point pipelines per core [19]. Thereby, it is up to the instruction
scheduler and its policy which units to use. However, the
degree of ILP is often less than the number of available
execution units (EUs). Hence, different scheduling policies can
influence the workload distribution and thereby the amount
of time a unit is under stress or active. Given this fact, the
scheduling techniques described in Table IV are investigated
if they can slow down aging. The differences between the five

Time

active inactive active

tdown tuptsleeptidle

new instruction

Fig. 3. Time flow of power gating periods of an execution unit

scheduling policies are thereby also illustrated in Table IV, for
an example with 2 execution units and an execution time of 1
cycle per instruction.

V. EXPERIMENTAL RESULTS

In this section the experimental results of clock and power
gating as well as instruction scheduling under the scope of
aging mitigation are discussed.

A. Evaluation Setup

The evaluated processor runs at 3 GHz and has one core
based on the architecture of the Alpha 21264 [22], which is
similar to modern superscalar architectures. Since this work
focuses on finding out how aging affects the execution units,
the evaluation of a single-core is sufficient. The modeled
core accommodates 2 ALUs for logic operations and integer
add/sub instructions, 2 CALUs for fix-point mul/div instruc-
tions and 2 FPUs for floating-point operations. Further details
of the processor configuration can be found in Table V. The
fabrication technology is a 32 nm node with a supply voltage
of 1.0 V and the initial temperature is 57 ◦C. Furthermore,
a delay degradation of 10% in 3 years (δB = 1, αB = 1,
TB = 90 ◦C) due to HCI and NBTI is assumed [4], [20].
Since the critical delay degradation is set to be 10%, the
MTTF under these conditions is 3 years. Please note that
under typical applications the temperature never comes close
to 90 ◦C. Hence, under typical workloads the MTTF is longer
even if no aging mitigation techniques are applied.

The applied workloads are part of the SPEC2000 benchmark
suite. Overall 6 integer and 7 floating point benchmarks, with
a runtime of 0.5 seconds each, are used. This runtime does
not include the initialization phase of each benchmark, which
is executed but not included in the measurements. Based on
the parameter behavior during the runtime the wearout after a
certain amount of time is predicted.

If not mentioned otherwise, in the following Subsection V-B
to Subsection V-F the performance is given as the average
MIPS (million instructions per second) count over all executed

Cycle: Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
Policy Description Instruction(s): A B,C D,E - -
Stat1 Always use the same EU EU1 (A) EU1 (B) EU1 (C) EU1 (D) EU1 (E)

Stat2 Always use the same EU EU1 (A) EU1 (B) EU1 (D)
If this one is not available1 take another one EU2 (C) EU2 (E)

CQ1 Change EU with every new instruction EU1 (A) EU2 (B) EU2 (D)
If unit is not available try next one EU1 (C) EU1 (E)

CQ2 Change EU only, if it is not available EU1 (A) EU1 (B) EU2 (D)
EU2 (C) EU1 (E)

CQ3-X Always use the same EU EU1 (A) EU1 (B) EU1 (C) EU2 (D) EU2 (E)Change EU every X cycles (here: X = 3)

TABLE IV
SCHEDULING POLICIES AND HOW THEY INFLUENCE WHICH EXECUTION UNIT (EU) EXECUTES WHICH INSTRUCTION (A,. . . ,E)(1 : BUSY, POWER GATED)

Processor Single-core @ 3 GHz, out-of-order, 4-issue
L1-Cache 64 KByte, 2-way, 64 Byte line, 3 cyc latency
L2-Cache 2 MByte, 16-way, 64 Byte line, 15 cyc latency

Execution Units 2x ALU, 2x CALU, 2x FPU

Expected wearout ∆reld = 10% in 3 years, i.e MTTF = 3 years
(δB = 1, αB = 1, TB = 90◦C)

Conditions Tstart =57 ◦C, Vdd = 1.0 V
Vth = 0.21 V, tm = 100 µs

Power gating power down 7 ns, power up 3 ns

SPEC2000 benchmarks applu, bzip2, equake, gcc, gzip, lucas, mcf,
mesa, mgrid, parser, swim, twolf, wupwise

TABLE V
CONFIGURATION DETAILS FOR THE EXPERIMENTS

benchmarks and the power consumption (dynamic + static)
is the average over all workloads and includes all execution
units. Please note that the power consumption for the power
gating controller is negligible (i.e. less than 0.3 mW) and
hence does not affect the shown results [34]. The determined
relative delay change ∆reld is always the worst possible
value for a runtime t = 3 years. For HCI induced aging we
use the microarchitectural model from Equation (8) and for
NBTI we use the model from Equation (7). Please note that
∆reld caused by NBTI is equivalent to the ∆reld of PMOS
transistors and aging due to HCI corresponds to the wearout
of NMOS transistors.

B. Effect of Clock/Power Gating Techniques

Usually clock and power gating techniques are used to
reduce the power consumption of a microprocessor. However,
as explained in Section IV-A, both techniques can be used
also to reduce aging induced by NBTI and HCI. To show
the potential of these techniques, the results obtained with
the native scheduling technique (CQ1) are presented in the
following. Here a power gating strategy, with tidle = 50 cycles
and tdur = 0 cycles is used.

Clock gating is extremely helpful to mitigate HCI. The
results illustrated in Figure 4 show that the worst ∆reld
(additional relative delay due to aging) over all execution units
and all workloads is just 55% of the original value without
using any optimization techniques. However, the benefit for
the entire unit is much smaller. Since clock gating without
input vector control has only a second order mitigation effect
on NBTI (only due to reduced temperature), ∆reld due to
NBTI is just reduced by 2%. Hence, PMOS transistors age
much faster (∆reldHCI = 3.8% after 3 years, ∆reldNBTI =
9.3% after 3 years).

To reduce NBTI-induced wearout, power gating is better
suited. However, the efficiency of power gating strongly de-
pends on the duty cycle of the transistors. If the duty cycle is
very high (i.e. δ > 0.9), power gating yields a high mitigation
of NBTI induced aging (here: more than 30%). If the duty
cycle is medium - as we assume (see Section III-B2) - the
power gating strategy used here reduces ∆reld just by 3%.
This is due to the fact that the relationship between NBTI
induced aging and the duty cycle is nonlinear, as depicted in
Figure 1(a) and that power gating primarily reduces the duty
cycle. Moreover, the benefit for HCI-induced wearout is much
smaller compared to the benefit obtained by clock gating, since

clock gating can be used much more often than power gating.
As a result HCI-induced aging is reduced by 4%.

For an efficient mitigation of HCI and NBTI, the combina-
tion of clock and power gating is the best choice. However,
in this scenario PMOS transistors age again much faster
than NMOS transistors (∆reldHCI = 4.4% after 3 years,
∆reldNBTI = 9.2% after 3 years) due to the already mentioned
fact, that power gating cannot be applied that often compared
to clock gating and only the first one has a first order influence
on NBTI (see Section IV-A).

Looking at the results from the perspective of power con-
sumption, it shows that the average consumption is already
heavily reduced by clock gating (just 35% of the original
consumption). Hence, power gating does not provide further
noticeable power reduction. On the other hand, the chosen
power gating strategy comes along with a performance loss of
13%, which is a major reason why power gating is still not
very wide spread.

C. Effect of Aging-Aware Scheduling

While clock gating already yields very good mitigation
results for HCI induced wearout using the native (CQ1)
scheduling technique, power gating is less efficient. Therefore,
the instruction scheduler can be optimized, to enhance the
aging mitigation potential of power gating. To investigate
which instruction scheduling policy is giving the best com-
promise between high performance and aging reduction of the
execution units, the policies Stat1, Stat2, CQ1, CQ2 and CQ3-
X with X = 103, . . . , 109 cycles introduced in Section IV-C
are examined. In these experiments clock and power gating
(tidle = 50 cycles, tdur = 0 cycles) are activated.

As the results in Figure 5 confirm, the best policy for
performance optimization is not the best policy for aging.
In fact, the CQ3-X policy gives the best compromise of
performance and aging. Even power consumption is the best
for this technique. Since NBTI is worse than HCI even when
CQ3-X is applied, the recommendation is the usage of CQ3-
X with X = 106 or 109 cycles. With this setting ∆reld due
to HCI is reduced by almost 7% compared to the native CQ1
technique. Aging due to NBTI is reduced by more than 35%,
while at the same time the performance loss is only 5 to 7%.

The reason why this scheduling technique is better suited
than the others is that, it can better unleash the aging mitigation

0

20

40

60

80

100

without with CG with PG with both

pr
op

or
tio

na
l

va
lu

es
in

%

Performance Power ∆reld HCI ∆reld NBTI

Fig. 4. Effects of clock gating (CG) and power gating (PG)

0

20

40

60

80

100

120

140

Stat1 Stat2 CQ1 CQ2 CQ3
-1e3

CQ3
-1e6

CQ3
-1e9

pr
op

or
tio

na
l

va
lu

es
in

%

Performance Power ∆reld HCI ∆reld NBTI

Fig. 5. Effects of diff. scheduling policies (with CG/PG)

potential of power gating. Since the same unit is used for X
cycles - and only this unit - the other unit of the same type
can be power gated for almost X cycles. Thereby a bigger X
is of advantage, because less power down and up phases are
necessary, which do not contribute to wearout reduction.

In contrast the static scheduling techniques are not suitable
for aging mitigation, since one unit is stressed almost the entire
runtime, which leads to a high wearout of this unit. The other
unit of the same type instead has almost no wearout, since it
is power gated more or less the entire time. This shows that
a balanced load is necessary to efficiently slow down aging,
which is only given by the CQ-policies.

D. Effect of different Power Gating Strategies

Using the CQ3-109 scheduling policy the performance loss
caused by the activation of the power gating strategy, where
tidle = 50 cycles and tdur = 0 cycles, is about 12%. To opti-
mize power gating for achieving good aging mitigation results
with minimal performance impact, two basic parameters can
be adjusted. First of all, the (idle) time tidle of a unit, before
the unit can be power gated, is adjustable. The other parameter
is the minimum power gating duration tdur, i.e. the minimum
time a unit is power gated, whenever power gating is activated

for that unit. In this section, the effects of different settings for
both parameters are investigated. In the following experiments
the scheduling technique CQ3-109 is used and clock gating
is always applied, hence in all configurations NBTI induced
wearout is worse than that due to HCI.

In Figure 6(a) and Figure 6(b) the results for different
settings are illustrated with tdur = 0 cyc. for the different
tidle settings and tidle = 50 cyc. for the different tdur
settings. Since an increasing tidle or a decreasing tdur means,
that power gating is activated less often, the performance is
improved. On the other hand this leads also to faster wearout.
However, the performance benefits are bigger than the aging
deficits. Hence, the best choice by looking at aging and
performance is a high tidle and a small tdur. The benefit for
HCI is smaller than that for NBTI. However, since NBTI is
worse in all configurations, the benefits for NBTI reduction
are more important.

In the “preferred” configuration (tidle = 5000 cyc., tdur =
0 cyc.), which is a combination of high performance and
slow aging, power gating yields a reduction of 32% for
∆reld caused by NBTI. Thereby the performance loss is less
than 0.5% compared to a configuration without power gating.
However, this configuration does not provide large benefits to
mitigate HCI. In absolute terms this means, that after 3 years
∆reld is 6.3% due to NBTI and is 4.1% due to HCI. Therefore,
the lifetime (MTTF) of the execution units can be prolongated
by more than 4 times compared to a solution without power
gating, i.e. the critical ∆reld induced by NBTI exceeds 10%
after 16 years, while without power gating this takes less than
4 years.

Furthermore, one should note that the average power con-
sumption for all the shown strategies is very low (< 0.4 Watt
for all execution units together). However, the “preferred”
configuration has the highest power consumption, which shows
that optimizing for power and optimizing for aging with
minimal performance impact do not always go hand in hand.

Performance Power ∆reld HCI ∆reld NBTI

0

20

40

60

80

100

no PG 10c 50c 100c 5000c

pr
op

or
tio

na
l

va
lu

es
in

%

(a) Different tidle cycles

0

20

40

60

80

100

no PG 0c 10c 50c 100c

pr
op

or
tio

na
l

va
lu

es
in

%

(b) Different tdur cycles

Fig. 6. Effect of various power gating strategies (with clock gating) on performance, power and aging

Configuration Native Native & CG Native & CG & PG Preferred
Average Performance [MIPS] 2329 2329 1996 2234 (-4%)

Average Power (all ex. units) [Watt] 3.62 1.32 0.40 0.40 (-89%)

∆reld due to HCI
3 years [%] 8.7 4.9 3.8 4.1 (-63%)
5 years [%] 11.5 6.4 5.8 5.4 (-63%)
7 years [%] 13.8 7.6 6.9 6.4 (-64%)

∆reld due to NBTI
3 years [%] 9.5 9.3 9.2 6.3 (-34%)
5 years [%] 10.9 10.8 10.5 7.3 (-33%)
7 years [%] 11.9 11.8 11.5 7.9 (-34%)

MTTF (lifetime) < 4 years < 4 years < 4 years > 16 years (+4x)

TABLE VI
NATIVE SOLUTION (CQ1, NO CG/PG) VS. “PREFERRED” CONFIGURATION (CQ3-109 , CG, PG: tdur = 0, tidle = 5000)

E. Combination of Clock/Power Gating and Scheduling

Putting the advantages of clock gating, different power
gating strategies and the aging-aware scheduling techniques
together, we obtain the best compromise among performance,
power consumption and aging. Under the made assumptions,
the CQ3-109 scheduling policy combined with clock gating
and the power gating strategy with tidle = 5000 cyc. and
tdur = 0 cyc., is the “preferred” solution, since this con-
figuration yields the best compromise between performance,
power and wearout.

As illustrated in Table VI, with the “preferred” solution
∆reld of NMOS transistors is reduced by 63%. For PMOS
transistors a reduction of 34% compared to the native solution
is achieved. For this reason, after 3 years ∆reld due to HCI
is just 4.1% and due to NBTI just 6.3%. In terms of lifetime,
even after 16 years ∆reld neither caused by NBTI nor by HCI
exceeds the 10% threshold, i.e. the MTTF is improved by a
factor of 4. Moreover, power consumption is just around 0.4
Watt, which is an improvement of 89%. All these come at the
cost of only 4% performance (MIPS) reduction.

Furthermore, due to the huge aging reduction, the guard-
bands can be reduced, which gives additional headroom to
increase the frequency to compensate the implied performance
losses. For example, for a 7 year lifetime the guardband has to
be 13.8% for the original technique, but just 7.9% for the pre-
ferred solution. Hence, the frequency can be increased, which
can be used to (partly) compensate the performance loss. In
this example, it is necessary that the processor can achieve a
clock frequency of 3.42 GHz (clock period = 292 ps) at t = 0
to ensure that it can run with 3 GHz (clock period = 333 ps)
the entire 7 years. Instead, with the “preferred” solution the
processor can be clocked with 3.17 GHz1 (clock period = 315
ps, ∆reldHCI ≤ 6.4%, ∆reldNBTI ≤ 7.9%) for at least 9
years, which leads to an average MIPS value of 2345. Hence
the performance loss of the “preferred” configuration can be
(over)compensated by the means of higher clock frequencies,
while the lifetime (MTTF) is still longer compared to the
native configuration.

F. Application Dependencies

The improvements of the “preferred” configuration com-
pared to the native solution (CQ1 scheduling, no clock/power

1higher temperature, i.e. faster wearout, due to increased frequency is
respected

gating) described in the previous section refer only to aver-
age values for performance and power or worst-case values
for aging. However, the efficiency of the chosen mitigation
techniques and aging itself are strongly application depen-
dent. Therefore, we also investigated the improvements of
the “preferred” configuration for each workload separately.
The corresponding relative results (i.e. improvements = 1-
preferred/native) are depicted in Figure 7. Please note that
the performance changes are negative to indicate that the
performance decreases compared to the native solution.

The improvements for HCI-induced wearout range from
53% to 76% and the benefits for aging due to NBTI range
from 33% to 41%. At the same time power consumption can be
in best case reduced by 97%, while the performance impacts
only range between nothing and 12.5%. An application that
fits very well to the chosen techniques is thereby for example
the mcf workload in which power consumption is reduced by
97%, HCI is mitigated by 75% and NBTI by 39%, while the
performance impact is negligible.

This rises the question, what can be done at software-level
to achieve low aging rates on a processor setup that is similar
to our “preferred” configuration. A crucial point for a high
efficiency of our proposed techniques are the cycles during the
execution of an application, in which an execution unit is doing
nothing, i.e. it is idle. Particularly with regard to the efficiency
of power gating it is better to have less idle periods, which
are indeed very long, than to have many short idle periods

-20

0

20

40

60

80

100

63

34

89

-4

Performance Power ∆reld HCI ∆reld NBTI

ap
pl

u

bz
ip

2

eq
ua

ke gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er

sw
im

tw
ol

f

w
up

w
is

e

av
g.

/w
or

st

Im
pr

ov
em

en
ts

in
%

Fig. 7. Relative improvements (possible maximum = 100%) of the “pre-
ferred” configuration for different applications compared to the native solution
(CQ1, no CG/PG)

0

1

2

3

4

5

6

sw
im m
cf

tw
ol

f

pa
rs

er

lu
ca

s

bz
ip

2

eq
ua

ke gc
c

ap
pl

u

m
gr

id

m
es

a

w
up

w
is

e

gz
ip

∆
r
e
l d

in
%

HCI
NBTI

(a) Worst ∆reld for NBTI and HCI for several workloads

0

1

2

3

4

5

6

bz
ip

2

gz
ip

m
cf

gc
c

pa
rs

er

tw
ol

f

sw
im

m
es

a

w
up

w
is

e

eq
ua

ke

lu
ca

s

ap
pl

u

m
gr

id

∆
r
e
l d

in
%

ALU (NBTI)
FPU (NBTI)
ALU (HCI)
FPU (HCI)

(b) ∆reld for ALU and FPU (NBTI and HCI) for several workloads

Fig. 8. Influence of various applications on NBTI- and HCI-induced transistor wearout (using the “preferred” configuration)

that are very short. For example, in case of our “preferred”
configuration power gating is activated after 200 idle cycles.
Hence, it is better to have just one idle period with 300 cycles
than three periods with just 100 cycles each. Good application
examples for this observation are the bzip2 and lucas. Both
have nearly the same ratio of idle to total cycles for the ALU0,
however the ratio of power gated cycles in bzip2 is much
smaller than in lucas leading to higher aging rates due to NBTI
(see Figure 8(a)). This means for the software development
that it is better in terms of aging to group operations of the
same type (i.e. ALU, FPU, memory accesses) together as much
as possible to create longer idle periods (more effective power
gating) for other blocks.

Beside the relative improvements also the absolute aging
rates for each application are very interesting. In Figure 8(a),
the influence of several workloads on NBTI and HCI induced
wearout is depicted, in which the “preferred” aging mitigation
configuration of Section V-E is used. As one can see, HCI and
NBTI do not always follow the same trend, although, aging
caused by NBTI is always worse than wearout due to HCI.
Indeed if the NBTI effect in application B is smaller than in
application A, it is not necessarily the same for HCI. This
is thereby mainly due to the chosen mitigation techniques,
especially clock and power gating. If the number of power
gated cycles in application B is higher than that in application
A, the NBTI effect can be smaller in B than in A. If at the
same time the total amount of idle cycles (power gated or
clock gated) in B is lower than in A, the HCI effect in B can
be higher than in A. Hence the amount of idle time and its
distribution during the execution of the workload has a high
influence not only on NBTI and HCI, but also on their ratio.

This effect can be seen also in Figure 8(b), in which the
aging for the ALU and FPU induced by HCI and NBTI is
illustrated. Furthermore, the obtained results show another
interesting phenomenon. Although in the applu and mgrid
benchmarks, the instruction ratio for the FPU is much higher
(up to 3x) than for the ALU, the NBTI-induced aging of the
ALU is faster than that of the FPU. This is due to the fact, that
the ALU can be power gated less often. In contrast, since HCI

can be mitigated using clock gating, and clock gating can be
applied every time the unit is idle, HCI-induced aging of the
ALU is less than that of the FPU. The not-depicted CALU ages
much slower (NMOS and PMOS) than the ALU or FPU, since
the load for this unit is much lower than for the other units.
For all types of execution units both units, e.g. ALU0 and
ALU1, age at the same rate, because of the chosen scheduling
technique, similar load and similar temperatures.

The results shown in Figure 8 underline also the statement,
that transistor usage needs to be modeled in order to have
accurate wearout estimation results. If the usage is not con-
sidered, all applications would lead to a similar wearout.

VI. CONCLUSION

Microprocessors at nano-scale are exposed to various re-
liability issues, which include more rapid aging of all com-
ponents. Physical effects like Negative Bias Temperature In-
stability (NBTI) and Hot Carrier Injection (HCI) cause a
shift of the transistors threshold voltage, which manifests in
increasing path delays. This eventually leads to slower devices
and reduces MTTF.

To model and analyze wearout due to NBTI and HCI at
microarchitecture-level, this paper presented a novel microar-
chitectural framework ExtraTime and its integrated tool set
containing a performance simulator combined with microar-
chitectural models for power, temperature and particularly
aging. With this setup ExtraTime does not only enable de-
signers to investigate aging mitigation techniques at hardware-
level, but also at software-level (application). Furthermore,
ExtraTime can be used very early in the design process
of a microprocessor, enabling design space exploration for
performance, power consumption, temperature and wearout.

Using this framework, we investigated various clock and
power gating strategies in combination with several instruc-
tion scheduling policies for aging mitigation with minimal
performance and power impacts. The simulation results show
that using these techniques together lifetime (MTTF) of the
execution units of a 32 nm superscalar microprocessor can
be extended by 4 times. At the same time performance is

only decreased about 4%. Alternatively some of the gained
headroom can be used to increase the frequency by relaxing
the guardbands to overcompensate this performance loss.

REFERENCES

[1] J. Abella, X. Vera, and A. Gonzalez, “Penelope: The NBTI-Aware
Processor,” in Proc. of the Int’l Symp. on Microarchitecture. IEEE
Computer Society, Dec. 2007, pp. 85–96.

[2] M. Agarwal, B. C. Paul, M. Zhang, and S. Mitra, “Circuit Failure
Prediction and Its Application to Transistor Aging,” in Proc. of the VLSI
Test Symp. IEEE Computer Society, May 2007, pp. 277–286.

[3] M. Basoglu, M. Orshansky, and M. Erez, “NBTI-Aware DVFS: A New
Approach to Saving Energy and Increasing Processor Lifetime,” in Proc.
of the Int’l Symp. on Low Power Electronics and Design. ACM, Aug.
2010, pp. 253–258.

[4] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R.
Nassif, E. J. Nowak, D. J. Pearson, and N. J. Rohrer, “High-performance
CMOS variability in the 65-nm regime and beyond,” IBM Journal of
Research and Development - Advanced silicon technology, vol. 50, pp.
433–449, July 2006.

[5] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt, “The M5 Simulator: Modeling Networked Systems,”
IEEE Micro, vol. 26, no. 4, pp. 52–60, July 2006.

[6] S. Borkar, “Designing Reliable Systems from Unreliable Components:
The Challenges of Transistor Variability and Degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10–16, Nov.-Dec. 2005.

[7] K. A. Bowman, B. L. Austin, J. C. Eble, X. Tang, and J. D. Meindl, “A
physical alpha-power law MOSFET model,” in Proc. of the Int’l Symp.
on Low Power Electronics and Design. New York, NY, USA: ACM,
1999, pp. 218–222.

[8] A. Bravaix, C. Guerin, V. Huard, D. Roy, J. Roux, and E. Vincent,
“Hot-Carrier Acceleration Factors for Low Power Management in DC-
AC stressed 40nm NMOS node at High Temperature,” in Int’l Reliability
Physics Symposium, April 2009, pp. 531–548.

[9] A. Calimera, E. Macii, and M. Poncino, “NBTI-Aware Power Gating
for Concurrent Leakage and Aging Optimization,” in Proc. of the Int’l
Symp. on Low Power Electronics and Design. ACM, Aug. 2009, pp.
127–132.

[10] T. Chan, J. Sartori, P. Gupta, and R. Kumar, “On the Efficacy of NBTI
Mitigation Techniques,” in Proc. of the Conf. on Design, Automation
and Test in Europe, March 2011, pp. 1–6.

[11] K.-L. Chen, S. Saller, and R. Shah, “The case of AC stress in the hot-
carrier effect,” IEEE Trans. on Electron Devices, vol. 33, no. 3, pp.
424–426, Mar. 1986.

[12] M. DeBole, R. Krishnan, V. Balakrishnan, W. Wang, H. Luo, Y. Wang,
Y. Xie, Y. Cao, and N. Vijaykrishnan, “New-Age: A Negative Bias
Temperature Instability-Estimation Framework for Microarchitectural
Components,” Int’l Journal of Parallel Programming, vol. 37, pp. 417–
431, Aug. 2009.

[13] D. Ernst, N. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A Low-
Power Pipeline Based on Circuit-Level Timing Speculation,” in Proc. of
the Int’l Symp. on Microarchitecture. IEEE Computer Society, 2003,
pp. 7–19.

[14] S. Feng, S. Gupta, and S. Mahlke, “Olay: Combat the signs of aging with
introspective reliability management,” Ann Arbor, vol. 1001, p. 48109,
2008.

[15] F. Firouzi, S. Kiamehr, and M. B. Tahoori, “A Linear Programming
Approach for Minimum NBTI Vector Selection,” in Proc. of the Great
Lakes Symp. on VLSI. ACM, 2011, pp. 253–258.

[16] E. Gunadi, A. A. Sinkar, N. S. Kim, and M. H. Lipasti, “Combating
Aging with the Colt Duty Cycle Equalizer,” in Proc. of the Int’l Symp.
on Microarchitecture. IEEE Computer Society, 2010, pp. 103–114.

[17] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. R. Stan, “HotSpot: A Compact Thermal Modeling Methodology
for Early-Stage VLSI Design,” IEEE Trans. on VLSI Systems, vol. 14,
no. 5, pp. 501–513, May 2006.

[18] Intel, “Intel 64 and IA-32 Architectures Software Developers Manual:
Basic Architecture,” vol. 1, 2006.

[19] R. Kalla, B. Sinharoy, W. Starke, and M. Floyd, “Power7: IBM’s Next-
Generation Server Processor,” IEEE Micro, vol. 30, no. 2, pp. 7–15,
March 2010.

[20] K. Kang, S. P. Park, K. Roy, and M. A. Alam, “Estimation of statistical
variation in temporal NBTI degradation and its impact on lifetime circuit
performance,” in Proc. of the Int’l Conf. on Computer-Aided Design.
IEEE Press, Nov. 2007, pp. 730–734.

[21] J. Keane, X. Wang, D. Persaud, and C. Kim, “An All-In-One Silicon
Odometer for Separately Monitoring HCI, BTI, and TDDB,” IEEE
Journal of Solid-State Circuits, vol. 45, no. 4, pp. 817–829, Apr. 2010.

[22] R. E. Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, vol. 19,
no. 2, pp. 24–36, Mar. 1999.

[23] O. Khan and S. Kundu, “A Self-Adaptive System Architecture to
Address Transistor Aging,” in Proc. of the Conf. on Design, Automation
and Test in Europe. European Design and Automation Association,
2009, pp. 81–86.

[24] S. Kim, S. V. Kosonocky, and D. R. Knebel, “Understanding and
Minimizing Ground Bounce During Mode Transition of Power Gating
Structure,” in Proc. of the Int’l Symp. on Low Power Electronics and
Design. ACM, Aug. 2003, pp. 22–25.

[25] R. Kumar and G. Hinton, “A Family of 45nm IA Processors,” in IEEE
Int’l Solid-State Circuits Conf. - Digest of Technical Papers, Feb. 2009,
pp. 58 –59.

[26] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures,” in Proc. of the
Int’l Symp. on Microarchitecture. ACM, Dec. 2009, pp. 469–480.

[27] F. Oboril and M. B. Tahoori, “ExtraTime: A Framework for Exploration
of Clock and Power Gating for BTI and HCI Aging Mitigation,” in Proc.
of Zuverlssigkeit und Entwurf, Sep. 2011.

[28] F. Oboril and M. B. Tahoori, “Reducing Wearout in Embedded Pro-
cessors Using Proactive Fine-Grain Dynamic Runtime Adaptation,” in
Proc. of the European Test Symp., May 2012.

[29] T. Siddiqua and S. Gurumurthi, “A Multi-Level Approach to Reduce the
Impact of NBTI on Processor Functional Units,” in Proc. of the Great
lakes Symp. on VLSI. ACM, 2010, pp. 67–72.

[30] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “Lifetime Reliability:
Toward an Architectural Solution,” IEEE Micro, vol. 25, pp. 70–80, May
2005.

[31] E. Takeda, Y. Nakagome, H. Kume, and S. Asai, “New hot-carrier
injection and device degradation in submicron MOSFETs,” IEEE Proc.
I, Solid-State and Electron Devices, vol. 130, no. 3, pp. 144–150, June
1983.

[32] A. Tiwari and J. Torrellas, “Facelift: Hiding and slowing down aging
in multicores,” in Proc. of the Int’l Symp. on Microarchitecture. IEEE
Computer Society, Nov. 2008, pp. 129–140.

[33] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez,
“Reducing Power in High-performance Microprocessors,” in Proc. of
the Design Automation Conf. ACM, 1998, pp. 732–737.

[34] K. Usami, T. Shirai, T. Hashida, H. Masuda, S. Takeda, M. Nakata,
N. Seki, H. Amano, M. Namiki, M. Imai, M. Kondo, and H. Nakamura,
“Design and Implementation of Fine-Grain Power Gating with Ground
Bounce Suppression,” in Int’l Conf. on VLSI Design, Jan. 2009, pp.
381–386.

[35] R. Vattikonda, W. Wang, and Y. Cao, “Modeling and Minimization of
PMOS NBTI effect for Robust Nanometer Design,” in Proc. of the
Design Automation Conf. ACM, 2006, pp. 1047–1052.

[36] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. patel, “Characterizing the
Effects of Transient Faults on a High-Performance Processor Pipeline,”
in Proc. of the Int’l Conf. on Dependable Systems and Networks. IEEE
Computer Society, June 2004, pp. 61–71.

[37] W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu, and Y. Cao, “The
Impact of NBTI Effect on Combinational Circuit: Modeling, Simulation,
and Analysis,” IEEE Trans. on VLSI Systems, vol. 18, no. 2, pp. 173–
183, Feb. 2010.

[38] Y. Wang, X. Chen, W. Wang, V. Balakrishnan, Y. Cao, Y. Xie, and
H. Yang, “On the efficiancy of Input Vector Control to mitigate NBTI
effects and leakage power,” in Proc. of the Int’l Symp. on Quality of
Electronic Design. IEEE Computer Society, Mar. 2009, pp. 19–26.

