

Today's Lecture

- Terminology and classification
- Causes of Faults and Trends
- Fault Modeling
 - Hardware
 - Software

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

Faults

- Fault: incorrect state of hardware or software resulting from physical defect, design flaw, or operator error
- Faults introduced during system design
 - Pentium's incorrect floating point division design
 - Bug in software could cause infinite loop
- Faults introduced during manufacturing
 - Bad solder connection between chip pin and motherboard
 - Broken wire within chip
- Faults that occur during operation
 - Cosmic ray knocks charge off DRAM cell
 - System administrator incorrectly installs new software

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

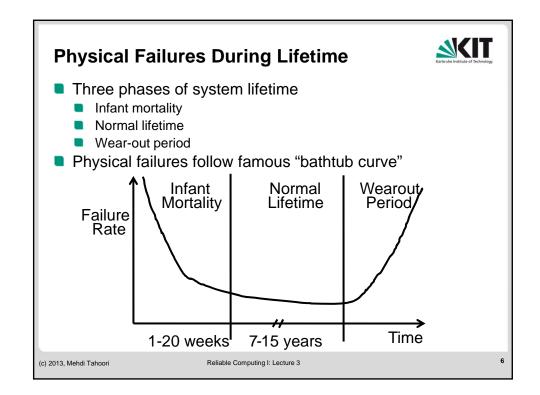
2

Errors

- Error: manifestation of a fault
 - Bit in main memory is a 0 instead of a 1 (due to cosmic ray)
 - Software pointer that mistakenly points to NULL (due to bug)
- But not all faults lead to errors!
 - Trees falling in empty forests don't make sounds
- Examples of masked faults
 - Cosmic ray knocks charge off logic signal, but after it had been correctly latched in and saved
 - Buggy software that isn't reached

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3


Failures

- Failure: system level effect of an error (uservisible)
 - System produces incorrect result of computation (e.g., 2+2=5)
 - System "hangs" (e.g., Blue Screen of Death)
- Not all errors lead to failures!
- Examples of masked errors
 - Bit flip in memory location that's not accessed again
 - NULL pointer that's not referenced again

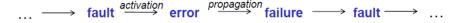
(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

Fundamental Chain of Dependability

 $\cdots \longrightarrow \text{fault} \xrightarrow{\text{activation}} \text{error} \xrightarrow{\text{propagation}} \text{failure} \longrightarrow \text{fault} \longrightarrow \cdots$

Example 1


- A short in an integrated circuit is a failure (with respect to the function of the circuit)
- The consequence (e.g., stuck at a Boolean value) is a fault that stays dormant until activated
- Upon activation (invoking the faulty component by applying an input) the fault becomes active and produces an error
- If and when the propagated error affects the delivered service (e.g., information content), a failure occurs

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

Fundamental Chain of Dependability

Example 2

- The result of an error by a programmer leads to a failure to write the correct instruction or data
- This results in a dormant fault in the written software (e.g., faulty instruction)
- Upon activation the fault become active and produces an error
- When the error affects the delivered service, a failure occurs

Example 3

- An inappropriate human-system interaction performed by an operator is an external fault (from the system view point)
- Resulting altered processed data is an error,

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

Fundamental Chain of Dependability

 $\dots \longrightarrow \text{fault} \xrightarrow{\text{activation}} \text{error} \xrightarrow{\text{propagation}} \text{failure} \longrightarrow \text{fault} \longrightarrow \dots$

- Example 4
 - Cosmic ray knocks charge off of DRAM cell
 - Error: bit flip in memory
 - Failure: computation produces incorrect result
- Example 5
 - Software bug could allow for NULL pointer
 - Bug gets exercised and we get NULL pointer
 - Program seg faults when it tries to access pointer

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

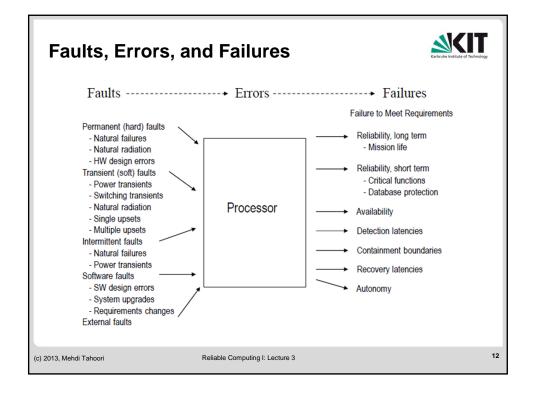
9

Propagation and Masking

- Impact of faults can spread throughout the system
 - If a chip shorts power to ground, it may cause nearby chips to fail as well
 - Common clock and power net
 - Independence of modules is a strong simplification
- Error propagation: Erroneous results used in subsequent computations
 - Containment upon detection important
- Masking
 - Electrical, logical, temporal, behavior al

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3


Masking

- Logical
 - E.g., if a fault flips a bit from 0 to 1 and it is then ANDed with a bit that is 0, then the fault cannot manifest itself as an error
- Functional
 - E.g., incorrect data is produced by an instruction that gets squashed due to a branch misprediction
 - E.g., the destination register of a NOP is corrupted by a fault

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

Origin of Defects in Objects

- (hardware or software)
- Good object wearing out with age
 - Hardware (software can age too)
 - Incorrect maintenance/operation
- Good object, unforeseen hostile environment
 - Environmental fault
- Marginal object: occasionally fails in target
- environment
 - Tight design/bad inputs
- Implementation mistakes
- Specification mistakes

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

13

Fault Classes: Temporal persistence

- Permanent faults, whose presence is continuous and stable.
 - E.g., Broken connection → always open circuit
- Intermittent faults, whose presence is only occasional due to unstable hardware or varying hardware and software states (e.g., as a function of load or activity)
 - E.g., Loose connection → occasionally open circuit
 - E.g., Bug in little-used software for rounding → incorrect data
- **Transient** faults, resulting from temporary environmental conditions.
 - E.g., Cosmic ray knocks charge off transistor → bit flip
 - Tend to be due to transient physical phenomena
 - Also known as Single Event Upset (SEU)

(c) 2013, Mehdi Tahoori

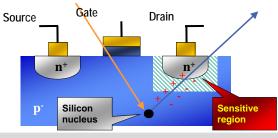
Reliable Computing I: Lecture 3

Fault Classes

- Based on the origin
 - Physical faults
 - Stemming from physical phenomena internal to the system,
 - such as threshold change, shorts, opens, etc.,
 - or from external changes,
 - such as environmental, electromagnetic, vibration, etc.
 - Human-made faults
 - Design faults,
 - introduced during system design, modification, or establishment of operating procedures,
 - Interaction faults,
 - violation of operating or maintenance procedures

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3


1

Physical Defects: Transient Phenomena

- Cosmic radiation
 - High energy particles that constantly bombard Earth
 - May have enough energy to disrupt charge on transistor (Qcrit)
 - Used to be only a problem for DRAM, but becoming a problem for SRAM and even for logic (as Qcrit decreases)

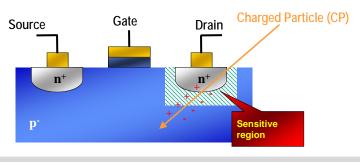
(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

Physical Defects: Transient Phenomena

- Cosmic radiation trends:
 - Qcrit decreasing
 - Probability increasing that a cosmic ray that hits a transistor will disrupt its charge
 - Transistor size decreasing → smaller probability that a cosmic ray will hit a particular transistor
 - More transistors per system → greater probability of fault

(c) 2013, Mehdi Tahoori


Reliable Computing I: Lecture 3

17

Physical Defects: Transient Phenomena

- Alpha particle radiation
 - Similar to cosmic rays, but radiation comes from metal decay
 - Often, the metal housing of the computer is the source
 - Lead solder joints also a problem → want to use "old lead"
 - Trends (same as for cosmic radiation):

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

Physical Defects: Transient Phenomena

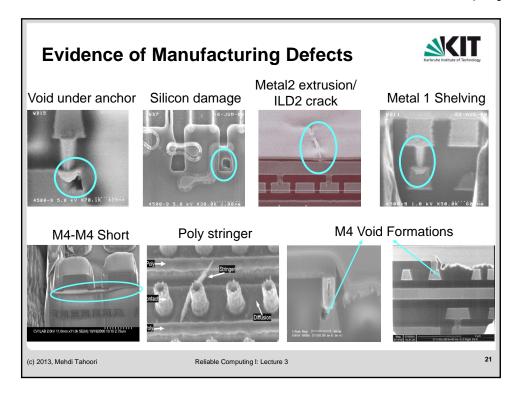
- Electromagnetic Interference (EMI)
 - Electromagnetic waves from other sources (e.g., microwave oven, power lines, etc.) can cause transient disruptions
 - EMI can be created by the circuit itself! Called "crosstalk"
 - EMI can induce electrical current on wires and thus change the signals on wires
- There are other sources of transient faults, but they tend to be less significant

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

19

Physical Defects: Manufacturing Defects



- Manufacturing is not a perfect process, especially for microprocessors
 - It's not easy to manufacture something with dimensions on the order of 45nm
 - Many stages of chip processing which have to be done perfectly and avoid contamination
- And testing doesn't filter out all defective systems
 - Often impossible to test for every possible defect in a reasonable amount of time
 - Also, testing won't detect defects that don't manifest immediately
- Nanotechnology makes this problem even worse

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

Physical Defects: Manufacturing Defects

- Manufacturing flaws
 - Bad solder connection between chip and board
 - VLSI defects
 - Trends:
 - Flaws may decrease as manufacturing process matures
 - But flaws increase at start of each new process
 - Tougher to avoid VLSI defects as dimensions shrink

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

Physical Defects: Manufacturing Defects

- VLSI fabrication process variability
 - During fab, there's some amount of variability in dimensions
 - Thickness of gate oxide dielectric
 - Length of channel
 - Area of via
- Variability can lead to undesirable behavior
 - Gate thickness falls below usable threshold → extra leakage current
 - Wire resistance is too high → signal too slow for clock
- Trend: variability rising as VLSI dimensions shrink
 - When dimensions are on the order of a handful of atoms, it doesn't take much variability to cause significant problems

(c) 2013, Mehdi Tahoori

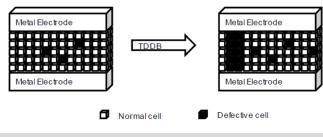
Reliable Computing I: Lecture 3

21

Physical Defects: Operational Defects

- Permanent (hard) defects can occur during operation
- Electromigration
 - Movement of metal atoms due to electron flow and temperature
 - Increases with current density and temperature
 - Unidirectional current: Power rails
 - Trend: getting worse as wires become smaller and chips become hotter

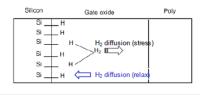
(c) 2013, Mehdi Tahoori


Reliable Computing I: Lecture 3

Physical Defects: Operational Defects

- Time Dependent Dielectric Breakdown (TDDB)
 - MOSFET transistor has a gate oxide that insulates the gate from the channel
 - If this oxide breaks down, will get a short between gate and channel
 - Trend: getting worse as gate oxides become thinner (only a handful of atoms thick!)

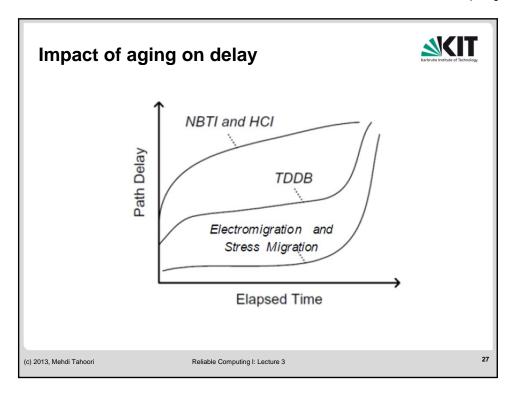
(c) 2013, Mehdi Tahoori


Reliable Computing I: Lecture 3


25

Physical Defects: Operational Defects

- Transistor aging
 - Causes
 - Negative and Positive Bias Temperature Instability (NBTI and PBTI)
 - Hot Carrier Injection (HCI)
 - Effects
 - Change of transistor's threshold voltage over time → Reduced current → Transistors become slower → cause timing failures
 - Trend: getting worse with technology scaling



(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

Hardware Design Flaws: Logical Bugs

- Famous examples:
 - Intel Pentium floating point divide didn't work in every single case due to bug in design
 - very costly recall
 - Sun UltraSPARC III had design flaw in a special cache that meant that it couldn't be used
 - loss in performance
 - AMD's quad-core Barcelona chip had design bug in TLB hardware
 - Long, expensive delay in shipping chips

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

Hardware Design Flaws: Timing Bugs

- Logic is fine, but the timing analysis is flawed
- Example: clocking a processor at 4 GHz when there's a slow path in the pipeline that can only run at 3.8 GHz
- Timing analysis must consider critical path delay and environmental effects (operating temperature, EMI, cross-talk, etc.) to determine the maximum operating speed
- This problem is exacerbated by process variability

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

29

Design Flaws: Software

- We all know that software has bugs
- Types of bugs
 - Incorrect algorithm
 - Memory leak (C, C++, but not Java)
 - Allocating memory, but not deallocating it
 - Reference to NULL pointer (C, C++, but not Java)
 - This usually leads to a seg fault and core dump
 - Incorrect synchronization in multithreaded code
 - Allowing more than 1 thread in critical section at a time

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

Operator Error

- It has been argued that operator error is the leading cause of computer system failures
- Examples
 - rm –R * (in the wrong directory)
 - Incorrect installation of software
 - Frying a board when installing new memory chips
 - Dropping the laptop (and/or kicking it)

(c) 2013, Mehdi Tahoor


Reliable Computing I: Lecture 3

31

Purpose of Fault Modeling

- Model = abstraction of physical phenomenon
- Simple, tractable way to analyze effects of faults
- Limitations
 - Model multiple defects (loss of resolution)
 - May not distinguish defects or miss defects
 - May not be realistic

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

Fault Modeling: Example

- "fail-stop" network switch
 - if a fault occurs, the switch will just stop doing anything
- Model reflects the behavior of many potential underlying faults
 - E.g., switch has short from power to ground, switch is on fire, etc.
- Easier to work with this model than to consider all possible faults
- Fail-stop fault model for network switch doesn't handle case where switch starts routing packets incorrectly
 - And this fault model represents several realistic underlying faults

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

33

Fault Models for Digital Circuits Traditional fault models Stuck-at faults A line is always at a fixed value (1 or 0) Bridges Lines shorted together Z(X,Y): modeled as OR, AND Transition delay faults Transition arrives too late Slow-to-rise, slow-to-fall Fault models for nano-scale circuits Crosstalk, small/path delay faults, resistive opens and bridges

Stack-at	Module level	Functional level	System level
Example: physical ailures in circuitsines in a gate level stuck at 0 or 1 Faulty contact	Example: decoder No output lines activated An incorrect line activated instead of desired line An incorrect line activated in addition to desired line	Example: Memories One or more cells are stuck at 0 or 1 One or more cells fail to undergo 0-1 or 1-0 transition Two or more cells are coupled A 1-0 transition in one cell changes contents in another cell More than one cell is accessed during READ or WRITE A wrong cell is accessed during READ or WRITE	Example: a parallel processor topology View machine as a graph - nodes correspond to processors - edges correspond to links Fault Model: A processor (node) or link (edge) faulty

How Many Faults at Once?

- Many fault models include the assumption that only one fault can occur at a given instance
 - Helps to make analysis more tractable
 - E.g., "single stuck-at fault" model
- Reasonable assumption if:
 - Faults are rare
 - System doesn't require extreme reliability
 - Faults are detected and, if necessary, removed quickly
- The problem with latent faults
 - Fault occurs, but isn't detected
 - Later, a "single" fault occurs, but this is now a double fault scenario
 - If you only plan for single faults, then this situation is a problem

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

Software Fault Models

- Allocation management : Memory region used after deallocation
- Copying overrun: Program copies data past end of a buffer
- Pointer management: Variable containing data address corrupted
- Wrong algorithm: Program works executes but uses wrong algorithm
- Uninitialized variable: Variable used before initialization
- Undefined state: System goes into unanticipated state
- Data error: Program produces or reads wrong data
- Statement logic: Statements executed in wrong order or omitted
- Interface error: A module's interface incorrectly defined or incorrectly used
- Memory leak: Program does not deallocate memory it has allocated
- Synchronization: Error in locking or synchronization code

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3

37

Software Fault Models

- Incorrect computation: Arithmetic overflow or an incorrect arithmetic function
- **Data fault**: Incorrect constant or variable
- Data definition fault: Fault in declaring data or data structure
- Missing operation: Omission of a few lines of source code
- Side effect of code update: Not all dependencies between software modules considered when updating software
- Unexpected situation: Not providing routines to handle rare but legitimate operational scenarios

(c) 2013, Mehdi Tahoori

Reliable Computing I: Lecture 3