Lecture 2: Types of Test

Instructor: M. Tahoori

Testing Principle

- Performed by
 - Automatic Test Equipment (ATE)
 - On-chip Built-In Self Test (BIST)
Tests for Manufacturing Defects

- **Chip**
 - Production Test
 - Wafer Sort or probe
 - Test Site
 - Die
 - Final Package
 - Burn In
 - Outgoing inspection
 - System Test
 - Incoming Inspection or Acceptance

- **Board**
 - In-Circuit or Bed-of Nails
 - Functional or Edge Connector

- **System**

Testing For Wearout Defects

- **On-Line Testing or Checking**
 - Concurrent checking techniques are designed to ensure that error is reported when the system produces incorrect outputs
 - Data Integrity
 - Techniques
 - Embedded Checkers - Error Detection
 - Periodic Diagnostic Programs
 - Watchdog Checks

- **Repair or Diagnostic Tests**
Testing For Transient Disturbances

- On-Line Testing or Checking
 - Embedded Checkers - Error Detection
 - Watchdog Checks

Important Observation

- Part can Operate Correctly with a Defective Component
 - Defect isn't Bad Enough to Prevent Correct Operation
 - CMOS gate-oxide short,
 - low β, ...

 Can cause intermittent errors

- Component is Redundant
Major Testing Categories

- Implicit
 - On-Line Test for Run-time Errors
 - Concurrent Checking, Monitoring, Built-in Test
- Explicit
 - Test for permanent defects
 - Referred to as “off-line testing” or simply “testing”

Implicit Testing

- Concurrent Checking, Monitoring, On-Line Test, Built-in Test
 - Test of operational system - Normal system inputs
 - Errors detected as they occur
 - Temporary as well as permanent faults
 - Identifies failed units for repair
- Circuit level techniques
 - Hardware faults detected
 - Prevents undetected data errors
- System level techniques
 - In Addition, Detect Control and Software Faults
 - Control flow checking
Implicit (Concurrent) Testing

- System level techniques
 - Memory Protection
 - Watchdog Timer
 - Watchdog Processor
 - Generalization of watchdog timer
 - Small processor operating in parallel with checked processor

- Circuit level techniques
 - Registers and Busses - parity code
 - RAM - Modified Hamming Code
 - Arithmetic Unit - Residue Code or Parity Prediction
 - Duplication
Temporary Failures

- Transient
 - Caused by environmental disturbances such as power-supply disturbances, electromagnetic interference, and radiation sources in space or terrestrial environments
 - Conductively Coupled - Supply voltage dip
 - Air coupled
 - Electromagnetic
 - Electrostatic

- Intermittent
 - Caused by flaws or latent manufacturing defects
 - Resulting in loss of noise margin, drive capability
 - Pattern sensitive faults

Explicit Testing

- Off-line test for permanent faults
 - Special test inputs used

- Output response analysis
 - Stored Response
 - Comparison (gold unit)
 - Compact Testing
 - Signature Analysis (LFSR)
Explicit Test Techniques

- **Parametric Test**
 - measures electrical properties of pin electronics
 - delay, voltages, currents, etc.
 - fast and cheap
 - Measure or "threshold" analog parameters
 - DC — Voltage levels, drive current, power,...
 - AC — Rise, fall, delay times

- **Boolean Test**
 - Digital test of logic operation
 - Also called functional test

- **Quasi-Boolean Test (AC test)**
 - Delay Fault Test

Explicit Tests According To Purpose

- **Characterization Test**
- **Production or Manufacturing Test**
- **Reliability (Accelerated Life) Test**
- **Stress Screen (Burn-In) Test**
- **Acceptance or Incoming Inspection**
- **Quality Test**
- **Repair, diagnosis, fault location**
Characterization Test

- Performed on new designs
- Measurement of Device Parameters and their Interactions
- performed on a sampled parts from different manufacturing lots
 - to account for process variation
- All Practical Combinations of
 - Supply Voltage
 - Temperature
 - Timing Conditions
 - Parametric Variations

- Shmoo Plot
- Used to
 - Set Final Specifications
 - Identify Areas to Improve Process to Increase Yield

Characterization Test (cont)

- Worst-case test
 - Choose test that passes/fails chips
 - Select statistically significant sample of chips
 - Repeat test for every combination of 2+ environmental variables
 - Plot results in Shmoo plot
 - Diagnose and correct design errors

- Less intensive characterization test performed during production life of chips to improve design and process to increase yield
Shmoo Plot

- Identify manufacturing defects.
- Identify areas where the manufacturing process steps (e.g., process optimization, wafer/batch monitoring parameters and procedures) and design characteristics (e.g., clock system design, timing critical paths) can be improved in order to increase yield.

Production Or Manufacturing Test

- Sort Out Defective Parts
- Bin Parts for Different Specifications
- Must cover high coverage of modeled faults
- Must minimize test time (to control cost)
- No fault diagnosis
- Tests every device on chip
- Only checked whether the part will operate according to specification
- Both mechanical properties such as package seal, and the electrical properties must be tested
- Test at speed of application or speed guaranteed by supplier
Production Or Manufacturing Test

- **Chip**
 - Wafer Sort or Probe
 - done before wafer is scribed and cut into chips
 - Includes test site characterization
 - specific test devices are checked with specific patterns to measure:
 - Gate threshold
 - Polysilicon field threshold
 - Poly sheet resistance, etc.
 - Final Package test
 - IDDq
 - **Very-Low Voltage (VLV)** As a part of reliability test
 - Burn In
 - System test

Electrical Test During Wafer Sort

- **Gross Tests**
 - Test for gross defects, e.g., Iddq, pin leakage, opens, shorts, etc.
- **DC or Static Parametric Tests**
 - Measure voltage, current and power levels.
- **AC Parametric Tests**
 - Timing measurements of parameters such as propagation delay, setup and hold times.
- **Boolean Tests**
 - Ensure correct device logic behavior.
- **Semi-Boolean (Delay) Tests**
 - Ensure path delays are within specifications.
Production Or Manufacturing Test

- Board
 - Bare Board
 - In-Circuit or Bed-of Nails
 - Functional or Edge Connector

Reliability (Accelerated Life) Test

- Test to Estimate Time to Failure in Normal Operation
 - Part is tested after high temperature and high voltage stress
 - Attention is paid so that the lifetime of defect-free parts is not significantly degraded due to stresses
Stress Screen (Burn-in) Test

- Some chips that pass production test will fail very quickly thereafter
- Process:
 - Subject chips to high temperature & over-voltage supply, while running production tests
 - 40% above normal supply voltage, temperature above 100 C, time of 30 hours
 - forcing failure in these "weak" chips
- Catches:
 - Infant mortality cases (short burn-in time required)
 - these are damaged chips that will fail in the first 2 days of operation - causes bad devices to actually fail before chips are shipped to customers
 - Freak failures (long burn-in time required)
 - devices having same failure mechanisms as reliable devices

Acceptance Or Incoming Inspection

- Test to Determine Degree of Compliance with Purchaser's Requirements
- Can be:
 - Similar to production testing
 - More comprehensive than production testing
 - Tuned to specific systems application
- Often done for a random sample of devices
 - Sample size depends on device quality and system reliability requirements
 - Avoids putting defective device in a system where cost of diagnosis exceeds incoming inspection cost
Quality Test

- Sample of Each Lot Tested
- Used by Quality Assurance Department
- Estimates Quality Level of Manufactured Parts

Repair, Diagnosis, Fault Location

- Test to Locate Failure Site on Failed Part
 - Board or boards in system
 - Chip or chips on board
 - Net on chip

- Purpose
 - Return system or board to correct operation
 - Improve chip yield, reliability, quality
Repair, Diagnosis, Fault Location

Software Diagnosis Techniques

- Fault simulation => probable fault location
- Pre-calculated fault dictionaries
- Post-test fault simulation

Hardware Diagnosis Techniques

- Direct observation
 - place chip in failed state
 - observe image
 - light emission
 - thermal effects
 - focused electron beam interaction
- Measure chip response to outside physical stimulus
 - scan chip with laser, electron beam, ion beam
 - monitor chip I/O, power supply

Limitations

- Defect dependent
- Some defects don't emit light or cause heating
- Needs access to chip transistors and internal wiring
Repair, Diagnosis, Fault Location

- Deprocessing
 - Remove chip layers until defect is isolated
 - ultra-fine probes
 - microscopes
 - optical, scanning-electron, scanning-probe

Testing Taxonomy

- Testing
 - Design Verification
 - Explicit Testing
 - Implicit Testing
 - Or
 - On-line Testing
 - Characterization
 - Production Test
 - Reliability Test
 - Qualification
 - Diagnosis

- Wafer Sort
 - Package Test
 - IDDQ
 - VLV
 - Burn-in
 - Min Vdd
 - SHOVE
 - System Test

- Gross Test
 - DC parametric Test
 - AC parametric Test
 - Boolean Test
 - Quasi-Boolean (Delay) Test
Types of Test

<table>
<thead>
<tr>
<th>Type of Test</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Test</td>
<td>Tests to sort out defective manufactured parts</td>
</tr>
<tr>
<td>Wafer Sort or Probe</td>
<td>Test of each die while still on the wafer</td>
</tr>
<tr>
<td>Final or Package Test</td>
<td>Test of packaged chips and separation into classes or bins (military,</td>
</tr>
<tr>
<td></td>
<td>commercial, industrial)</td>
</tr>
<tr>
<td>Acceptance Test</td>
<td>A test to demonstrate the degree of compliance of a device with</td>
</tr>
<tr>
<td></td>
<td>purchaser’s requirements</td>
</tr>
<tr>
<td>Sample Test</td>
<td>Test of some but not all parts</td>
</tr>
<tr>
<td>Go / No Go Test</td>
<td>Test to determine whether device meets specification</td>
</tr>
<tr>
<td>Characterization</td>
<td>Test to determine actual values of device AC and DC parameters and</td>
</tr>
<tr>
<td></td>
<td>the interaction of parameters. Used to set final specifications and to</td>
</tr>
<tr>
<td></td>
<td>identify areas to improve process to increase yield.</td>
</tr>
<tr>
<td>Stress Screening</td>
<td>Test with stress (high temperature, temperature cycling, voltage, vibration,</td>
</tr>
<tr>
<td></td>
<td>etc.) applied to eliminate short life parts</td>
</tr>
<tr>
<td>Reliability Test (Accelerated Life Test)</td>
<td>Test after subjecting the part to extended high temperature or voltage to estimate time to failure in normal operation</td>
</tr>
<tr>
<td>Diagnostic Test</td>
<td>Test to locate failure site on failed part</td>
</tr>
<tr>
<td>Quality Test</td>
<td>Test by quality assurance department of a sample of each lot of manufactured parts. More stringent than final test.</td>
</tr>
<tr>
<td>On-line Test</td>
<td>On-line testing to detect errors that occur during normal system operation.</td>
</tr>
<tr>
<td>System Test</td>
<td>Test by plugging a device into an actual system and running the system.</td>
</tr>
<tr>
<td>Design Verification</td>
<td>Verifying the correctness of a design</td>
</tr>
</tbody>
</table>

Test Flow

1. **Die**
 - DC Parameters
 - Functional
 - I/O
 - Logic
 - Delay

2. **Wafer Sort**
 - GO/No-GO
 - In-line Wafer Tests

3. **Manufacturing**
 - Masks

4. **Packaged Device**
 - Burn-In
 - Package Test
 - Test escapes
 - Customer
 - System Integration
 - System Test

5. **Test Flow**
 - Customer
 - Test escapes
 - Incoming inspection
 - Fallout

Copyright 2010, M. Tahoori