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Today’s Lecture A(IT

® Re-Execution techniques
® RESO
® Multithreading
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Re-Execution -\N(IT

® Replicate the actions on a module either
® on the same module (temporal redundancy) or
® on spare modules (temporal & spatial redundancy)
® Good for detecting and/or correcting transient faults
® Transient error will only affect one execution
® Analogy from real life: calling to confirm a reservation
® Can implement this at many different levels
| ALU
® Thread context
® Processor
B System
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Re-Execution with Shifted Operands (RESO) _\ﬂ("’

B Re-execute the same arithmetic operations, but with
shifted operands (question: why shift?)

® Goal: detect errors in ALU

® Example: shift left by 2
® Simplified example: we’re ignoring wraparound

0010 10X X
#1001 01X X
1010 11X X

® By comparing output bit O of the first execution and
output bit 2 of the shifted re-execution, we detect an
error in the ALU, since they should be equal
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Re-Execution With a Twist -\5‘("-

@ After adding A + B = C, then compute C-B

® If we don’t get A, there’s a problem
® What new types of faults/errors does this detect?
® How general is this approach?

® |.e., how many operations are reversible?

® Can we extend this to higher-level operations
(algorithms)?

® The devil is in the details (corner cases)
® Overflow, underflow, divide by zero, etc.

@ This type of execution checking is more frequently
performed at the software level ... why?
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Re-Execution with Processes -\3‘("-

® Use redundant process to detect errors

® If we only have one single-threaded core, we must
execute the two processes sequentially and then
compare their results. If they differ, there’s an error.

® Problem: slowdown factor = 2
® In a multicore, we can execute copies of the same

process simultaneously on 2 cores and have them
periodically compare their results

B Trend: even single chips contain multiple processors
® Almost no slowdown, except for comparisons

® Disadvantages: the opportunity cost and power/energy cost
of not using that other core to perform non-redundant work

B |s this an FER approach? (hint: what happens if an error
occurs?)
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Re-Execution with Threads -\N(IT

B Use redundant threads to detect/correct errors

B A thread is like a process, except that multiple threads can
share the same address space
® Many current microprocessors, like the Pentium4, are
multithreaded (“hyperthreaded”, if you work for Intel)

B Each processor can run multiple processes or multiple

threads of the same process (i.e., it has multiple thread
contexts)

® Can re-execute a program on multiple thread contexts,
just like with multiple processors

® Better performance than re-execution with multiple _
processors, since the comparison can be performed on-chip

B Less opportunity cost to use extra thread context than extra
processor
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Fault Detection via Lockstepping (HP Himalaya) _\ﬂ("’

R1 « (R2) R1« (R2)
microprocessor \><'/ microprocessor
Input Output
Replication Comparison

1 ’
Memory covered by ECC

RAID array covered by parity
Servernet covered by CRC

Replicated Microprocessors + Cycle-by-Cycle Lockstepping
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Fault Detection via Simultaneous Multithreading%ﬂg.!l

R1 « (R2) R1« (R2)
THREAD \><’/ THREAD
Input Output
Replication Comparison

1 y

Memory covered by ECC
RAID array covered by parity
Servernet covered by CRC

Threads 2
Replicated Microprocessors + Cycle-by-Cycle Lockstepping
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Simultaneous Multithreading (SMT) ﬂ(".
Thread1 1 1Thread2
Instruction
Scheduler
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Example: Alpha 21464, Intel Northwood
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Redundant Multithreading (RMT)

@ RMT = Multithreading + Fault Detection (& Recovery)

Multithreading (MT)

Redundant
Multithreading (RMT)

Multithreaded
Uniprocessor

Simultaneous
Multithreading (SMT)

Simultaneous &
Redundant Threading
(SRT)

Chip Multiprocessor
(CMP)

Multiple Threads
running on CMP

Chip-Level Redundant
Threading (CRT)
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Sphere of Replication

Trailing
Thread

‘ Memory System (incl. L1 caches)}

® Two copies of each architecturally visible thread
® Co-scheduled on SMT core
® Compare results: signal fault if different

12
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‘Fetch HDecode HDispatch H Execute HCommit J
'

‘ Data Cache ’

Both leading & trailing threads would go through this pipeline
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Load Value Queue (LVQ) -\3("-
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| Data Cache

‘Fetch HDecode HDispatch H Execute HCommit W
y

® Load Value Queue (LVQ)
® Keep threads on same path despite I/O or MP writes
® Out-of-order load issue possible
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Store Queue Comparator (STQ) -\N(IT

‘Fetch HDecode HDispatch H Execute HCommit W
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| Data Cache ’

® Store Queue Comparator
® Compares outputs to data cache
® Catch faults before propagating to rest of system
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Branch Outcome Queue (BOQ) _\ﬂ(l'l'

‘Fetch ]—P[Decode HDispatch H Execute HCommit W
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| Data Cache ’

® Branch Outcome Queue
® Forward leading-thread branch targets to trailing fetch
® 100% prediction accuracy in absence of faults
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Line Prediction Queue (LPQ) -\N(IT

(Fetch ]—P[Decode HDispatch H Execute HCommit ’
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‘ Data Cache ’

® Line Prediction Queue
® Alpha 21464 fetches chunks using line predictions
® Chunk = contiguous block of 8 instructions
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SRT Performance _\ﬂ(l'l'

® One logical thread — two hardware contexts
® Performance degradation = 30%
® Per-thread store queue buys extra 4%
® Two logical threads — four hardware contexts
® Average slowdown increases to 40%
® Only 32% with per-thread store queues

(c) 2019, Mehdi Tahoori Reliable Computing I: Lecture 10 18

KIT — University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association



AT

Karlsruher Institut far Technologie Reliable Computing | — Lecture 10
Chip-Level Redundant Threading Q(IT

® SRT typically more efficient than splitting one
processor into two half-size CPUs

® What if you already have two CPUs?
® Multicore processors

® Conceptually easy to run these in lock-step
® Benefit: full physical redundancy

B Costs:
B Latency through centralized checker logic
B Overheads (misspeculation etc.) incurred twice

® CRT combines best of SRT & lockstepping
® requires multithreaded CMP cores

® With per-thread store queues, ~13% improvement
over lockstepping with 8-cycle checker latency
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Chip-Level Redundant Threading A(IT

CPUA CPUB

Trailing
Thread A

Trailing Q <
Thread B
Stores
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