Reliable Computing I

Lecture 7: Information Redundancy-2
Instructor: Mehdi Tahoori

KIT - University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Today's Lecture

Codes for storage and communication

- Cyclic codes
- Reed-Solomon codes

Arithmetic codes
Self-checking logic

Codes for Storage and Communication

- Cyclic codes are parity check codes with additional property that cyclic shift of codeword is also a codeword
- if (Cn-1, Cn-2 ... C1, C0) is a codeword, (Cn-2, Cn-3, ... C0, Cn-1) is also a codeword
Cyclic codes are used in
- sequential storage devices, e.g. tapes, disks, and data links - communication applications
- An (n, k) cyclic code can detect single bit errors, multiple adjacent bit errors affecting fewer than (n-k) bits, and burst transient errors
- Cyclic codes require less hardware, in form of linear feedback shift registers
- parity check codes require complex encoding, decoding circuit using arrays of EX-OR gates, AND gates, etc.

Cyclic Code and Polynomials

Cyclic codes depend on the representation of data by a polynomial

- If $\left(C_{n-1}, C_{n-2} \ldots C_{1}, C_{0}\right)$ is a codeword, its polynomial representation is $C(x)=C_{n-1} x^{n-1}+C_{n-2} x^{n-2}+\ldots C_{1} x+C_{0}$
Cyclic codes are characterized by their generator polynomial $\mathrm{g}(\mathrm{x})$
- $g(x)$ is a polynomial of degree ($n-k$) for an (n, k) code, with a unity coefficient in ($\mathrm{n}-\mathrm{k}$) term
$g(x)$ is a factor of x^{n}-1, i.e., it divides it with zero remainder
- if a polynomial with degree $n-k$ divides $x^{n}-1$, then $g(x)$ generates a cyclic code
- Example: for $(7,4)$ code, $g(x)=x^{3}+x+1$

Cyclic Redundancy Check (CRC)

Considers dataword and codeword to be polynomials

- E.g., $i_{0}, i_{1}, i_{2}, \ldots, i_{n-1} \rightarrow i_{0}+i_{1} X+i_{2} X^{2}+\ldots+i_{n-1} X^{n-1}$

Codeword $=$ Dataword * Generator

- $C(X)=D(X){ }^{*} g(X)$
- $g(X)$ is pre-defined CRC polynomial
- depends on particular code
- Additions performed during multiplication are mod2
- $0+0=0,0+1=1+0=1,1+1=0$

At receiver, divide n-bit codeword by CRC polynomial
$D(X)=C(X) / g(X)$
If remainder is non-zero, we've detected an error

Basic Operations on Polynomials

Can multiply or divide one polynomial by another, follow modulo 2 arithmetic, coefficients are 1 or 0 , and addition and subtraction are same

$$
\begin{aligned}
& \text { Multiplication } \quad\left(x^{4}+x^{3}+x^{2}+1\right)\left(x^{3}+x\right) \quad \begin{aligned}
& x^{7}+x^{6}+x^{5}+x^{3} \\
+ & x^{5}+x^{4}+x^{3}+x
\end{aligned} \\
& = \\
& =x^{7}+x^{6}+x^{4}+x
\end{aligned}
$$

Cyclic Code - Example

Consider generator polynomial $g(x)=x^{3}+x+1$ for $(7,4)$ code

- Can verify $g(x)$ divides $x^{7}-1$
- Given data word (1111), generate codeword
- $d(x)=x^{3}+x^{2}+x+1$

Then $c(x)=g(x) d(x)=\left(x^{3}+x^{2}+x+1\right)\left(x^{3}+x+1\right)$ $=x^{6}+x^{5}+x^{3}+1$
Hence code word is (1101001)

CRC Properties and Varieties

An n-bit CRC check can detect all errors of less than n bits and all but 1 in 2^{n} multi-bit errors

- Examples:
- CRC-12: $g(X)=X^{12}+X^{11}+X^{3}+X^{2}+X+1$
- CRC-16: $g(X)=X^{16}+X^{15}+X^{2}+1$

Ethernet uses CRC-32

- More bits \rightarrow better error detection capability

Circuit to Generate Cyclic Code

- Consider blocks labeled X as multipliers, and addition elements as modulo 2

Another representation is to replace multipliers by storage elements, adders by EX-OR gates

Generation of Code Words

Cyclic codes for 4-bit information words.	
Information	Code
$\left(\mathbf{d}_{0}, \mathbf{d}_{1}, \mathbf{d}_{2}, \mathbf{d}_{3},\right)$	$\left(\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}\right)$
0000	0000000
0001	0001101
0010	0011010
0011	0010111
0100	0110100
0101	0111001
0110	0101110
0111	0100011
1000	1101000
1001	1100101
1010	1110010
1011	1111111
1100	1011100
1101	1010001
1110	1000110
1111	1001011

Data polynomial $=\mathrm{d}_{0}+\mathrm{d}_{1} \mathrm{x}+\mathrm{d}_{2} \mathrm{x}^{2}+\mathrm{d}_{3} \mathrm{x}^{3}$
Generator polynomial $=1+x+x$
Code polynomial $=v_{0}+v_{1} x+v_{2} x^{2}+v_{3} x^{3}+v_{4} x^{4}$
$+v_{5} x^{5}+v_{6}{ }^{x} 6$

The encoding process					
Register values					
Clock period	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{D}(\mathbf{x})$	$\mathrm{V}(\mathbf{x})$
0	0	0	0		
1	1	0	1	1	1
2	1	1	1	1	0
3	0	1	1	0	1
4	1	0	0	1	0
5	0	1	0	0	0
6	0	0	1	0	0
7	0	0	0	0	1

Decoding of Cyclic Codes

Determine if code word $\left(r_{n-1}, r_{n-2}, \ldots ., r_{1}, r_{0}\right)$ is valid
Code polynomial $r(x)=r_{n-1} x^{n-1}+r_{n-2} x^{n-2}+\ldots r_{1} x+r_{0}$

- If $r(x)$ is a valid code polynomial, it should be a multiple generator polynomial $g(x)$
- $\mathrm{r}(\mathrm{x})=\mathrm{d}(\mathrm{x}) \mathrm{g}(\mathrm{x})+\mathrm{s}(\mathrm{x})$, where $\mathrm{s}(\mathrm{x})$ the syndrome polynomial should be zero
Hence, divide $r(x)$ by $g(x)$ and check the remainder whether equal to 0

Circuits for Decoding

Another representation is to replace multipliers by storage elements and adders by EX-OR gates

Systematic Cyclic Codes

Previous cyclic codes were not systematic, i.e. data not part of code word
To generate (n, k) systematic cyclic code, do the following:

Multiply $\mathrm{d}(\mathrm{x})$ by $\mathrm{x}^{\mathrm{n}-\mathrm{k}}$, this is accomplished by shifting $\mathrm{d}(\mathrm{x})$ n-k bits

- The code polynomial is $c(x)=r(x)+x^{n-k} d(x)$
- Hence $x^{n-k} d(x)+r(x)=g(x) q(x)$, which is code word $c(x)$ since it is a multiple of $g(x)$

Example of Systematic Cyclic Code

Generator polynomial $g(x)=x^{4}+x^{3}+x^{2}+1$ of $(7,3)$ code

- Data is 3 bits, $n-k=4$ bits

Message Bits			Code Word $\mathrm{x}^{4} \mathrm{M}(\mathrm{x})-\mathrm{C}(\mathrm{x})$$\qquad$
$\mathrm{m}_{2} \mathrm{~m}_{1} \mathrm{~m}_{0}$	$\mathrm{x}^{4} \mathrm{M}(\mathrm{x})$	$C(x)=\operatorname{Rem}\left[x^{4} M(x) \div G(x)\right]$	
000	0	0	0000000
001	x^{4}	$\mathrm{x}^{3}+\mathrm{x}^{2}+1$	0011101
010	x^{5}	$\mathrm{x}^{2}+\mathrm{x}+1$	0100111
011	$\mathrm{x}^{5}+\mathrm{x}^{4}$	$\mathrm{x}^{3}+\mathrm{x}$	0111010
100	x^{6}	$\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}$	1001110
101	$\mathrm{x}^{6}+\mathrm{x}^{4}$	$\mathrm{x}+1$	1010011
110	$\mathrm{x}^{6}+\mathrm{x}^{5}$	$\mathrm{x}^{3}+1$	1101001
111	$\mathrm{x}^{6}+\mathrm{x}^{5}$	$\mathrm{x}^{4} \quad \mathrm{x}^{2}$	1110100

$d(x) x^{n-k}$

Reed-Solomon Codes

- Popular ECC for CDs, DVDs, wireless communications, etc.
- k data symbols, each of which is s bits
- r parity symbols, each of which is also s bits
- Can correct up to r/2 symbols that contain errors
- Or can correct up to r symbol erasures
- Erasure = error in a known symbol
- Denoted by RS(n,k)
- Common example: RS $(255,223)$ with $s=8$
- $\mathrm{n}=255 \rightarrow 255$ codeword bytes
- $\mathrm{k}=223 \rightarrow 223$ dataword bytes
- r=32 \rightarrow can correct errors in ≤ 16 bytes

Reed-Solomon Codes,

There exist many flavors of RS codes, each of which is tailored to specific purpose

- Cross-Interleaved Reed-Solomon Coding (CIRC) used in CDs can correct error burst of up to 4000 bits!
- 4000 bits is roughly equivalent to 2.5 mm on the CD surface
RS codes are best for bursty error model
Just as good at handling 1 error in symbol or s errors in symbol
Codewords created by multiplying datawords with generator polynomial (like CRC)

Checksum Codes - Basic Concepts

- The checksum is appended to block data when such blocks are transferred

Single Precision Checksums

A single-precision checksum is formed by adding the data words and ignoring any overflow

Original Data

$d_{3} d_{2} d_{1} d_{0}$
0111
0001
01110
0000
Checksum
1110

The single-precision checksum is unable to detect certain types of errors.
Original Data The received checksum and the checksum of the received data are equal, so no error is detected.

Double Precision Checksums

Compute 2 n -bit checksum for a block of n -bit words

- Overflow is still a concern, but it is now overflow from a $2 n-$ bits

Original Data
Received Data
$\mathrm{d}_{3} \mathrm{~d}_{2} \mathrm{~d}_{1} \mathrm{~d}_{0}$
0111

0000

Checksum | | 000 | 1110 |
| :--- | :--- | :--- |

$d_{3} d_{2} d_{1} d_{0}$

Checksum of Received Data

| 0010 | 1110 |
| :---: | :---: | | Received Checksum | |
| :---: | :---: |
| 1000 | 1110 |

The received checksum and the checksum of the received data are not equal, so the error is detected

Honeywell Checksums

Concatenate consecutive words to form double words to create $\mathrm{k} / 2$ words of 2 n bits; checksum formed over newly structured data

Residue Checksums

- The same concept as the single-precision checksum except that the carry bit is not ignored and is added to checksum in an end-around carry fashion

Arithmetic Codes

- Useful to check arithmetic operations
- Parity codes are not preserved under addition, subtraction
- Arithmetic codes can be

Separate: check symbols disjoint from data symbols

- Non-separate: combined check and data

Several Arithmetic codes
AN codes, Residue codes, Bi-residue codes
Arithmetic codes have been used in STAR fault tolerant computer for space applications

AN codes

Data X is multiplied by check base A to form A.X

- Addition of code words performed modulo M where A divides M
- $A\left(X+{ }_{M} Y\right)=A X+{ }_{M} A Y$
- Check operation by dividing the result by A
- If result = 0, no error, else error

Residue Codes

- Separate code (X, X Mod A)
- Created by appending the residue of a number to that number

Berger Codes

- Used in Control units as systematic codes
- The k check bits are the binary encoding of the number of zeros in the d-bit dataword
- Berger codes are formed by appending $\mathrm{k}=\left\lceil\log _{2}(\mathrm{~d}+1)\right\rceil$ check bits and $\mathrm{n}=\mathrm{d}+\mathrm{k}$
- Example:
- $X=10010001$ => $k=\left\lceil\log _{2}(8+1)\right\rceil=4$
- the number of 1 s in this data is 3 (0011)
- the complement of (0011) is (1100)
- the resulting code word is: 100100011100

Berger Codes

Can detect all single-bit errors and all unidirectional multi-bit errors

- Unidirectional: all bit errors are either from $0 \rightarrow 1$ or from $1 \rightarrow 0$

Good for detecting coupling faults

- Change in one bit erroneously causes change(s) in other bit(s)
- Models short circuits (including bridging faults)

Self-Checking Circuits

- What properties/invariants can we build into circuits such that codeword inputs do not lead to codeword outputs in the presence of faults?
- Self-testing circuit
- for every fault from a prescribed set there exists at least one valid input code word that will produce an invalid output code word when a single fault is present in the circuit
Fault secure circuit
- any single fault from a prescribed set results in the circuit either producing the correct code word or producing a non-code word, for any valid input code word
Totally self-checking circuit (TSC)
- the circuit is both fault secure and self-testing
- all single faults are detectable by at least one valid code word input, and when a given input combination does not detect the fault, the output is the correct code word output

Implementing EDC/ECC in Hardware

- Where does EDC/ECC get used?
- Disk, CD-ROM
- Memory (DRAM, SRAM)

Buses

- Network
- Tradeoff between EDC and ECC
- ECC: Forward error recovery
- Often on critical path, so can slow down even fault-free system
- EDC: Backward error recovery
- Detecting error leads to recovery (can be slow)
- So would you use ECC or EDC in your L1 cache?
- How about in DRAM?

