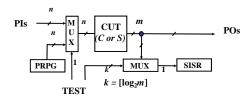



Logic BIST Architectures

Four Types of BIST Architectures:

- No special structure to the CUT
- Make use of scan chains in the CUT
- Configure the scan chains for test pattern generation and output response analysis
- Use concurrent checking circuitry of the design


Copyright 2016, M. Tahoori

TDS II: Lecture 7

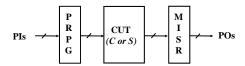
Centralized and Separate Board-Level BIST (CSBL)

- Two LFSRs and two multiplexers are added to the circuit.
- The first LFSR acts as a PRPG, the second serves as a SISR.
- The first multiplexer selects the inputs, another routes the PO to the SISR.

CSBL Architecture

[Benowitz 1975]

Copyright 2016, M. Tahoori


TDS II: Lecture 7

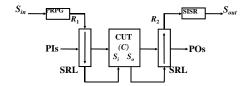
_

Built-In Evaluation and Self-Test (BEST)

- Use a PRPG and a MISR.
- Pseudo-random patterns are applied in parallel from the PRPG to the chip primary inputs (PIs)
- MISR is used to compact the chip output responses

BEST Architecture

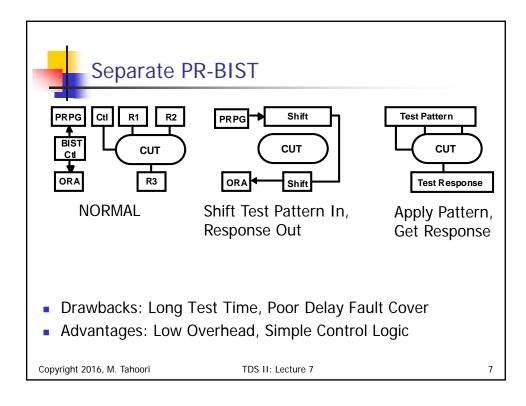
[Perkins 1980]

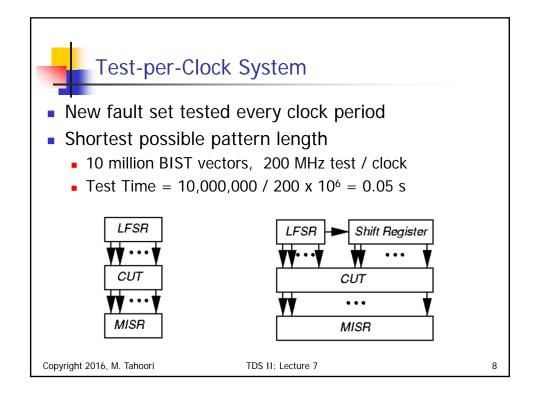

Copyright 2016, M. Tahoori

TDS II: Lecture 7

Separate PR-BIST

- In addition to the internal scan chain, an external scan chain comprising all primary inputs and primary outputs is required.
- The External scan-chain input is connected to the scan-out point of the internal scan chain.


LOCST Architecture


[Eichelberger 1983]

Copyright 2016, M. Tahoori

TDS II: Lecture 7

6

Test-per-Scan System

- New fault tested during 1 clock vector with a complete scan chain shift
- More time required per test than test-per-clock
 - Advantage:
 - Combination of scan chains and MISR reduces MISR bit width
 - Disadvantage:
 - Much longer test pattern set length, causes fault simulation problems
- Input patterns time shifted & repeated
 - Become correlated reduces fault detection effectiveness
 - Use XOR network to phase shift & decorrelate

Copyright 2016, M. Tahoori

TDS II: Lecture 7

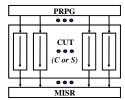
q

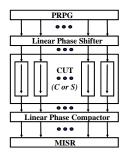
STUMPS

- Self-Test Using MISR and Parallel Shift register sequence generator
- Originally proposed to reduce overhead of LFSR/MISR for application to testing multi-chip boards, each of which has only the Shift Registers
- Can also be used on a single chip with multiple scan chains

Copyright 2016, M. Tahoori

TDS II: Lecture 7


10


Lecture 7 5

STUMPS Example

- SR1 ... SRn 25 full-scan chains, each 200 bits
- 5000 chip outputs, need 25 bit MISR (not 5000 bits)

STUMPS

A STUMPS-based Architecture

Copyright 2016, M. Tahoori

TDS II: Lecture 7

11

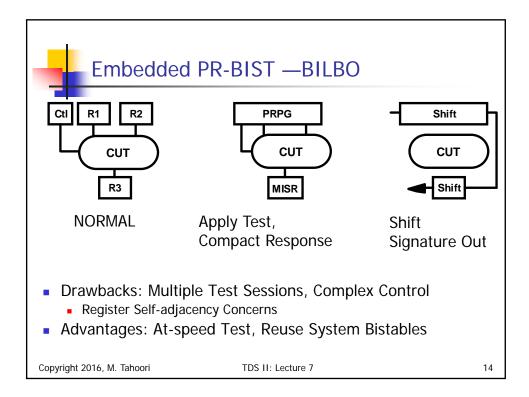
STUMPS

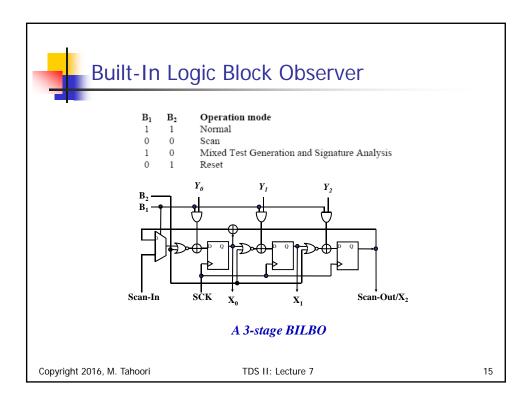
- Test procedure:
 - Scan in patterns from LFSR into all scan chains (200 clocks)
 - Switch to normal functional mode and clock 1 x with system clock
 - Scan out chains into MISR (200 clocks) where test results are compacted
 - Overlap Steps 1 & 3
- Requirements:
 - Every system input is driven by a scan chain
 - Every system output is caught in a scan chain or drives another chip being sampled

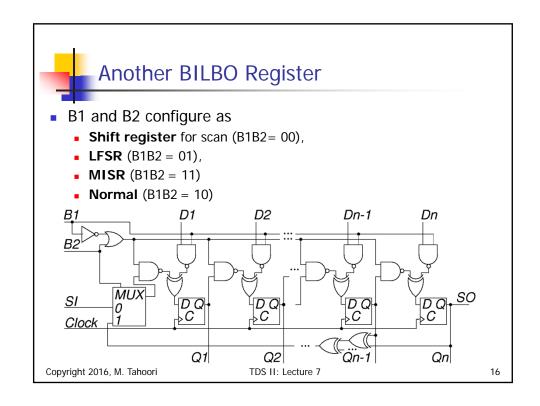
Copyright 2016, M. Tahoori

TDS II: Lecture 7

12

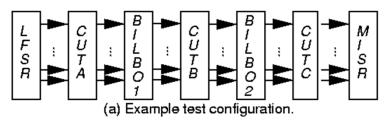

Built-In Logic Block Observer (BILBO)


- The architecture applies to circuits that can be partitioned into independent modules (logic blocks).
- Each module is assumed to have its own input and output registers (storage elements)
 - Or such registers are added to the circuit where necessary.
- The registers are redesigned so that for test purposes they act as PRPGs or MISRs.


Copyright 2016, M. Tahoori

TDS II: Lecture 7

13

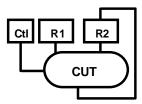

Lecture 7 8

Example BILBO Usage

- SI Scan In
- SO Scan Out
- Characteristic polynomial: 1 + x + ... + xⁿ
- CUTs A and C: BILBO1 is MISR, BILBO2 is LFSR
- CUT B:

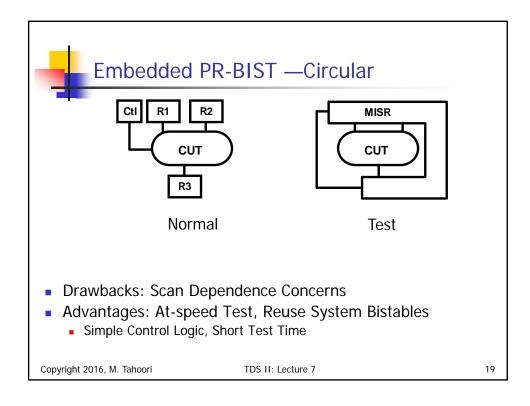
BILBO1 is LFSR, BILBO2 is MISR

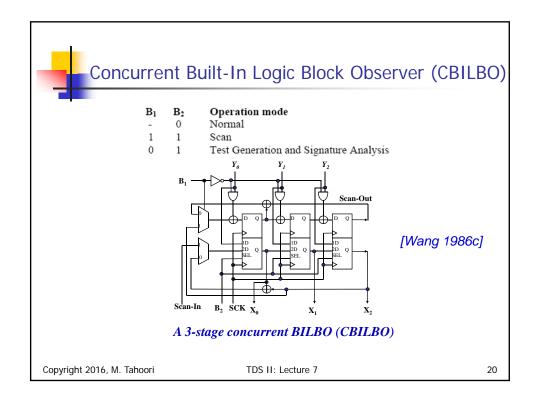
Copyright 2016, M. Tahoori

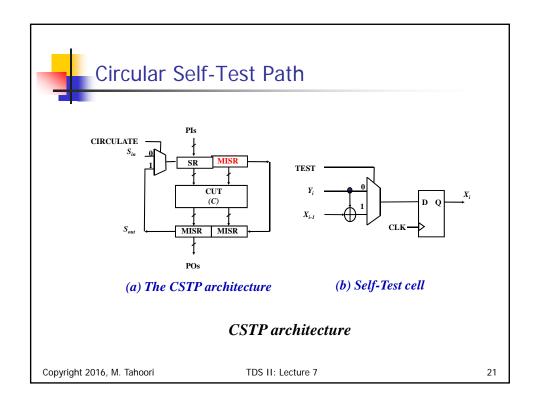

TDS II: Lecture 7

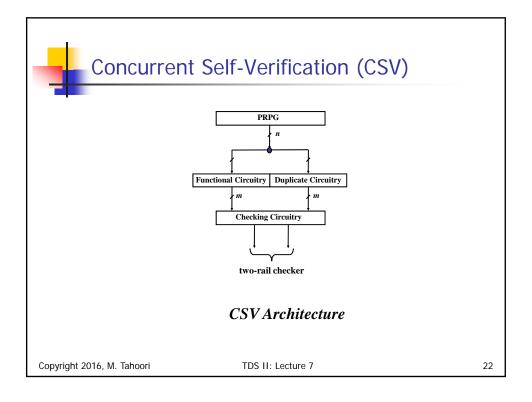
17

Register self-Adjacency


- Register R2 is self-adjacent
 - It should act as LFSR and MISR at the same time
 - Cannot use BILBO register




Copyright 2016, M. Tahoori


TDS II: Lecture 7

18

Summary

Architecture	Level	TPG	ORA	Circuit	BIST
CSBL	B or C	PRPG	SISR	C or S	Test-Per-Clock
BEST	B or C	PRPG	MISR	C or S	Test-Per-Clock
LOCST	С	PRPG	SISR	С	Test-Per-Scan
STUMPS	B or C	PRPG	MISR	С	Test-Per-Scan
BILBO	С	PRPG	MISR	С	Test-Per-Clock
CBILBO	C	EPG/PEPG	MISR	С	Test-Per-Clock
CSTP	С	PRPG	MISR	C or S	Test-Per-Clock
CSV	С	PRPG	Checker	C or S	Test-Per-Clock

B: board-level testing C: combinational circuit S: sequential circuit

Representative Logic BIST Architectures

Copyright 2016, M. Tahoori

TDS II: Lecture 7

23